1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Коррозия трубопроводов и водогрейных котлов

КОРРОЗИЯ МЕТАЛЛА ПОВЕРХНОСТЕЙ НАГРЕВА КОТЛОІ И МЕРУ ПО ЕЕ ПРЕДУПРЕЖДЕНИЮ

Условия, в которых находятся элементы паровых котлов во время эксплуатации, чрезвычайно разнообразны.

Как показали многочисленные коррозионные испытания и промышленные наблюдения, низколегированные и даже аустенитные стали при эксплуатации котлов могут подвер­гаться интенсивной коррозии.

Коррозия металла поверхностей нагрева паровых кот­лов вызывает его преждевременный износ, а иногда приво­дит к серьезным неполадкам и авариям.

Большинство аварийных остановов котлов приходится на сквозные коррозионные поражения экранных, экономай — зерных, пароперегревательных труб и барабанов котлов. Появление даже одного коррозионного свища у прямоточ­ного котла приводит к останову всего блока, что связано с недовыработкой электроэнергии. Коррозия барабанных котлов высокого и сверхвысокого давления стала основной причиной отказов в работе ТЭЦ. 90 % отказов в работе из-за коррозионных повреждений произошло на барабанных котлах давлением 15,5 МПа. Значительное количество кор­розионных повреждений экранных труб солевых отсеков было в’зонах максимальных тепловых нагрузок.

Проведенными специалистами США обследованиями 238 котлов (блоки мощностью от 50 до 600 МВт) было зафиксировано 1719 вне­плановых простоев. Около 2/3 простоев котлов были вызваны коррози­ей, из них 20 % приходилось на коррозию парогенерирующих труб. В США внутренняя коррозия’в 1955 г. была признана серьезной проб­лемой после ввода в эксплуатацию большого числа барабанных котлов давлением 12,5—17 МПа.

К концу 1970 г. около 20 % из 610 таких котлов были поражены коррозией. В основном внутренней коррозии были подвержены экран­ные трубы, а пароперегреватели и экономайзеры поражались ею мень­ше. С улучшением качества питательной воды и переходом на режим координированного фосфатироваиия, с ростом параметров на барабан­ных котлах электростанций США вместо вязких, пластических корро­зионных повреждений происходили внезапные хрупкие разрушения экранных труб. ‘По состоянию на J970 т. для котлрв давлением 12,5; 14,8 и 17 МПа разрушение труб из-за коррозионных повреждений со­ставило соответственно 30, 33 и 65 % [23].

По условиям протекания коррозионного процесса раз­личают атмосферную коррозию, протекающую под дейст­вием атмосферных, а также влажных газов; газовую, обу­словленную взаимодействием металла с различными газа­ми — кислородом, хлором и т. д. — при высоких температу­рах, и коррозию в электролитах, в большинстве случаев протекающую в водных растворах.

По характеру коррозионных процессов котельный ме­талл может подвергаться химической и электрохимической коррозии, а также их совместному воздействию.

При эксплуатации поверхностей нагрева паровых кот­лов встречается высокотемпературная газовая коррозия в окислительной и восстановительной атмосферах топоч­ных газов и низкотемпературная электрохимическая кор­розия хвостовых поверхностей нагрева.

Исследованиями установлено, что высокотемператур­ная коррозия поверхностей нагрева наиболее интенсивно протекает лишь при наличии в топочных газах избыточного свободного кислорода и в присутствии расплавленных ок­сидов ванадия.

Высокотемпературная газовая или сульфидная корро­зия в окислительной атмосфере топочных газов поражает трубы ширмовых и конвективных перегревателей, первые ряды кипятильных пучков, металл дистанционирующих проставок между трубами, стойки и подвески.

Высокотемпературная газовая коррозия в восстановит тельной атмосфере наблюдалась на экранных трубах то­почных камер ряда котлов высокого и сверхкритического давления.

Коррозия труб поверхностей нагрева с газовой стороны представляет сложный физико-химический процесс взаимо­действия топочных газов и наружных отложений с окисны — ми пленками и металлом труб. На развитие этого процесса оказывают влияние изменяющиеся во времени интенсивные тепловые потоки и высокие механические напряжения, возникающие от внутреннего давления и самокомпенсации.

На котлах среднего и низкого давления ‘ температура стенки экранов, определяемая температурой кипения воды, ниже, и поэтому этот вид разрушения металла не наблюда­ется.

Коррозия поверхностей нагрева со стороны дымовых газов (внешняя коррозия) есть процесс разрушения метал­ла в результате взаимодействия с продуктами сгорания, агрессивными газами, растворами и расплавами минераль­ных соединений.

Под коррозией металла понимают постепенное разру­шение металла, происходящее вследствие химического или электрохимического воздействия внешней среды.

Процессы разрушения металла, являющиеся следствием их непосредственного химического взаимодействия с окру­жающей средой, относятся к химической коррозии.

Химическая коррозия происходит при контакте металла с перегретым паром и сухими газами. Химическую корро­зию в сухих газах называют газовой коррозией.

В топке и газоходах котла газовая коррозия наружной поверхности труб и стоек пароперегревателей происходит под воздействием кислорода, углекислого газа, водяных паров, сернистого и других газов; внутренней поверхности труб — в результате взаимодействия с паром или водой.

Электрохимическая коррозия в отличие от химической характеризуется тем, что протекающие при ней реакции сопровождаются возникновением электрического тока.

Переносчиком электричества в растворах служат ионы, присутствующие в них из-за диссоциации молекул, а в ме­таллах — свободные электроны:

Внутрикотловая поверхность подвержена в основном электрохимической коррозии. По современным представле­ниям ее проявление обусловлено двумя самостоятельными процессами: анодным, при котором ионы металла перехо­дят в раствор в виде гидратироваиных ионов, и катодным, при котором происходит ассимиляция избыточных электро­нов деполяризаторами. Деполяризаторами могут быть ато­мы, ионы, молекулы, которые при этом восстанавливаются.

По внешним признакам различают сплошную (общую) и местную (локальную) формы коррозионных разрушений.

При общей коррозии вся соприкасающаяся поверхность нагрева с агрессивной средой подвергается разъеданию, равномерно утоняясь с внутренней или наружной стороны. При локальной коррозии разрушение происходит на от­дельных участках поверхности, остальная поверхность ме­талла не затрагивается повреждениями.

К местной локальной относят коррозию пятнами, язвен­ную, точечную, межкристаллитную, коррозионное растрес­кивание, коррозионную усталость металла.

Типичный пример разрушения от электрохимической коррозии.

Разрушение с наружной поверхности труб НРЧ 042X5 мм из ста­ли 12Х1МФ котлов ТПП-110 произошло на горизонтальном участке в нижней части подъемно-опускной петли в зоне, примыкающей к подо­вому экрану. На тыльной стороне трубы произошло раскрытие с ма­лым утонением кромок в месте разрушения. Причиной разрушения явилось утонение стенки трубы примерно на 2 мм при коррозии из-за расшлаковки струей воды. После останова котла паропроизводитель — ностью 950 т/ч, отапливаемого пылью антрацитного штыба (жидкое шлакоудаление), давлением 25,5 МПа и температурой перегретого пара 540 °С на трубах оставались мокрый шлак и зола, в которых интенсив­но протекала электрохимическая коррозия. Снаружи труба была по­крыта толстым слоем бурой гидроокиси железа Внутренний диаметр труб находился в пределах допусков на трубы котлов высокого и сверх­высокого давления. Размеры по наружному диаметру имеют отклоне­ния, выходящие за пределы минусового допуска: минимальный наруж­ный диаметр. составил 39 мм при минимально допустимом 41,7 мм. Толщина стенки вблизи места разрушения от коррозии составляла все­го 3,1 мм при номинальной толщине трубы 5 мм.

Микроструктура металла однородна по длине и окружности. На внутренней поверхности трубы имеется обезуглераженный слой, обра­зовавшийся при окислении трубы в процессе термической обработки. На наружной стороне такой слой отсутствует.

Обследования труб НРЧ после первого разрыва позволило выяс­нить причину разрушения. Было принято решение о замене НРЧ и об изменении технологии расшлаковки. В данном случае электрохимиче­ская коррозия протекала из-за наличия тонкой пленки электролита.

Читать еще:  Распитие водки на кладбище

Язвенная коррозия протекает интенсивно на отдельных небольших участках поверхности, но часто на значитель­ную глубину. При диаметре язвин порядка 0,2—1 мм ее называют точечной.

В местах, где образуются язвины, со временем могут образоваться свищи. Язвины часто заполняются продукта­ми коррозии, вследствие чего не всегда их удается обнару­жить. Примером может служить разрушение труб стально­го экономайзера при плохой деаэрации питательной воды и низких скоростях движения воды в трубах.

Несмотря на то что поражена значительная часть ме­талла труб, из-за сквозных свищей приходится полностью заменять змеевики экономайзера.

Металл паровых котлов подвергается следующим опас­ным видам коррозии: кислородной коррозии во время ра­боты котлов и нахождения их в ремонте; межкристаллит — ной коррозии в местах упаривания котловой воды; парово­дяной коррозии; коррозионному растрескиванию элементов котлов, изготовленных из аустенитных сталей; подшламо — вой коррозии. Краткая характеристика указанных видов коррозии металла котлов приведена в табл. ЮЛ.

В процессе работы котлов различают коррозию метал­ла — коррозию под нагрузкой и стояночную коррозию.

Коррозии под нагрузкой наиболее подвержены обогре-. ваемые котельные элементы, контактирующие с двухфаз­ной средой, т. е. экранные и кипятильные трубы. Внутрен­няя поверхность экономайзеров и перегревателей при работе котлов поражается коррозией меньше. Коррозия под нагрузкой протекает и в обескислороженной среде.

Стояночная коррозия проявляется в недренируемых. элементах вертикальных змеевиков перегревателей, провис­ших трубах горизонтальных змеевиков перегревателей

Виды коррозии паровых котельных агрегатов

а) Кислородная коррозия

Наиболее часто от кислородной коррозии страдают стальные водяные экономайзеры котельных агрегатов, которые при неудовлетворительной деаэрации питательной воды выходят из строя через 2-3 года после установки.

Непосредственным результатом кислородной коррозии стальных экономайзеров является образование в трубках свищей, через которые с большой скоростью вытекает струя воды. Подобные струи, направленные на стенку соседней трубы, способны изнашивать ее вплоть до образования сквозных отверстий. Поскольку трубы экономайзеров располагаются достаточно компактно, что образовавшийся коррозионный свищ способен вызвать массовое повреждение труб, если котельный агрегат длительно остается в работе с появившимся свищом. Чугунные экономайзеры кислородной коррозией не повреждаются.

Кислородной коррозии чаще подвергаются входные участки экономайзеров. Однако при значительной концентрации кислорода в питательной воде он проникает и в котельный агрегат. Здесь кислородной коррозии подвергаются главным образом барабаны и опускные трубы. Основной формой кислородной коррозии является образование в металле углублений (язв), приводящих при их развитии к образованию свищей.

Увеличение давления интенсифицирует кислородную коррозию. Поэтому для котельных агрегатов с давлением 40 ата и выше опасными являются даже «Проскоки» кислорода в деаэраторах. Существенное значение имеет состав воды, с которой соприкасается металл. Наличие небольшого количества щелочи усиливает локализацию коррозии, присутствие хлоридов рассредоточивает ее по поверхности.

б) Стояночная коррозия

Котельные агрегаты, находящиеся в простое, поражаются электрохимической коррозией, которая получила название стояночной. По условиям эксплуатации котельные агрегаты нередко выводят из работы и ставят в резерв или останавливают на длительное время.

При останове котельного агрегата в резерв давление в нем начинает падать и в барабане возникает вакуум, вызывающий проникновение воздуха и обогащение котловой воды кислородом. Последнее создает условия для появления кислородной коррозии. Даже в том случае, когда вода полностью удаляется из котельного агрегата, внутренняя поверхность его не бывает сухой. Колебания температуры и влажности воздуха вызывают явление конденсации влаги из атмосферы, заключенной внутри котельного агрегата. Наличие же на поверхности металла пленки, обогащенной при доступе воздуха кислородом, создает благоприятные условия для развития электрохимической коррозии. Если на внутренней поверхности котельного агрегата имеются отложения способные растворяться в пленке влаги, интенсивность коррозии значительно возрастает. Подобные явления могут наблюдаться, например, в пароперегревателях, которые часто страдают от стояночной коррозии.

Если на внутренней поверхности котельного агрегата имеются отложения способные растворяться в пленке влаги, интенсивность коррозии значительно возрастает. Подобные явления могут наблюдаться, например, в пароперегревателях, которые часто страдают от стояночной коррозии.

Поэтому при выводе котельного агрегата из работы в длительный простой необходимо удалить имеющиеся отложения промывкой.

Стояночная коррозия может нанести серьезные повреждения котельным агрегатам, если не будут приняты специальные меры их защиты. Опасность ее заключается еще и в том, что созданные, ею в период простоя коррозионные очаги продолжают действовать и в процессе работы.

Для предохранения котельных агрегатов от стояночной коррозии производят их консервацию.

в) Межкристаллитная коррозия

Межкристаллитная коррозия возникает в заклепочных швах и вальцовочных соединениях паровых котельных агрегатов, которые смываются котловой водой. Она характеризуется появлением в металле трещин, вначале весьма тонких, незаметных для глаза, которые развиваясь, превращаются в большие видимые трещины. Они проходят между зернами металла, почему эта коррозия и называется межкристаллитной. Разрушение металла при этом происходит без деформации, поэтому эти разрушения называют хрупкими.

Опытом установлено, что межкристаллитная коррозия возникает лишь при одновременном наличии 3-х условий:

1) Высоких растягивающих напряжений в металле, близких к пределу текучести.
2) Неплотности в заклепочных швах или вальцовочных соединениях.
3) Агрессивных свойств котловой воды.

Отсутствие одного из перечисленных условий исключает появление хрупких разрушений, что и используют на практике для борьбы с межкристаллитной коррозией.

Агрессивность котловой воды определяется составом растворенных в ней солей. Важное значение имеет содержание едкого натра, который при высоких концентрациях (5-10%) реагирует с металлом. Такие концентрации достигаются в неплотностях заклепочных швов и вальцовочных соединений, в которых происходит упаривание котловой воды. Вот почему наличие неплотностей может обусловить появление хрупких разрушений при соответствующих условиях. Кроме этого, важным показателем агрессивности котловой воды является относительная щелочность — Щот.

г) Пароводяная коррозия

Пароводяной коррозией называется разрушение металла в результате химического взаимодействия с водяным паром: ЗFe + 4Н20 = Fe304 + 4Н2
Разрушение металла становится возможным для углеродистых сталей при увеличении температуры стенки труб до 400°С.

Продуктами коррозии является газообразный водород и магнетит. Пароводяная коррозия имеет как равномерный, так и локальный (местный) характер. В первом случае на поверхности металла образуется слой продуктов коррозии. Местный характер коррозии имеет вид язв, бороздок, трещин.

Основной причиной возникновения паровой коррозии является нагрев стенки трубки до критической температуры, при которой ускоряется окисление металла водой. Поэтому борьба с пароводяной коррозией осуществляется путем устранения причин, вызывающих перегрев металла.

Пароводяную коррозию нельзя устранить путем какого-то изменения или улучшения водно-химического режима котельного агрегата, так как причины этой коррозии кроются в топочных и внутрикотловых гидродинамических процессах, а также условиях эксплуатации.

д) Подшламовая коррозия

Этот вид коррозии происходит под слоем шлама, образовавшегося на внутренней поверхности трубы котельного агрегата, вследствие питания котла недостаточно очищенной водой.

Повреждения металла, возникающие при подшламовой коррозии, имеют локальный (язвенный) характер и располагаются обычно на полупериметре трубы, обращенном в топку. Образующиеся язвы имеют вид раковин диаметром до 20 мм и более, заполненных окислами железа, создающими «бугорок» под язвой.

Читать еще:  К чему снится пить воду во сне

Виды коррозии паровых котельных агрегатов

а) Кислородная коррозия

Наиболее часто от кислородной коррозии страдают стальные водяные экономайзеры котельных агрегатов, которые при неудовлетворительной деаэрации питательной воды выходят из строя через 2-3 года после установки.

Непосредственным результатом кислородной коррозии стальных экономайзеров является образование в трубках свищей, через которые с большой скоростью вытекает струя воды. Подобные струи, направленные на стенку соседней трубы, способны изнашивать ее вплоть до образования сквозных отверстий. Поскольку трубы экономайзеров располагаются достаточно компактно, что образовавшийся коррозионный свищ способен вызвать массовое повреждение труб, если котельный агрегат длительно остается в работе с появившимся свищом. Чугунные экономайзеры кислородной коррозией не повреждаются.

Кислородной коррозии чаще подвергаются входные участки экономайзеров. Однако при значительной концентрации кислорода в питательной воде он проникает и в котельный агрегат. Здесь кислородной коррозии подвергаются главным образом барабаны и опускные трубы. Основной формой кислородной коррозии является образование в металле углублений (язв), приводящих при их развитии к образованию свищей.

Увеличение давления интенсифицирует кислородную коррозию. Поэтому для котельных агрегатов с давлением 40 ата и выше опасными являются даже «Проскоки» кислорода в деаэраторах. Существенное значение имеет состав воды, с которой соприкасается металл. Наличие небольшого количества щелочи усиливает локализацию коррозии, присутствие хлоридов рассредоточивает ее по поверхности.

б) Стояночная коррозия

Котельные агрегаты, находящиеся в простое, поражаются электрохимической коррозией, которая получила название стояночной. По условиям эксплуатации котельные агрегаты нередко выводят из работы и ставят в резерв или останавливают на длительное время.

При останове котельного агрегата в резерв давление в нем начинает падать и в барабане возникает вакуум, вызывающий проникновение воздуха и обогащение котловой воды кислородом. Последнее создает условия для появления кислородной коррозии. Даже в том случае, когда вода полностью удаляется из котельного агрегата, внутренняя поверхность его не бывает сухой. Колебания температуры и влажности воздуха вызывают явление конденсации влаги из атмосферы, заключенной внутри котельного агрегата. Наличие же на поверхности металла пленки, обогащенной при доступе воздуха кислородом, создает благоприятные условия для развития электрохимической коррозии. Если на внутренней поверхности котельного агрегата имеются отложения способные растворяться в пленке влаги, интенсивность коррозии значительно возрастает. Подобные явления могут наблюдаться, например, в пароперегревателях, которые часто страдают от стояночной коррозии.

Если на внутренней поверхности котельного агрегата имеются отложения способные растворяться в пленке влаги, интенсивность коррозии значительно возрастает. Подобные явления могут наблюдаться, например, в пароперегревателях, которые часто страдают от стояночной коррозии.

Поэтому при выводе котельного агрегата из работы в длительный простой необходимо удалить имеющиеся отложения промывкой.

Стояночная коррозия может нанести серьезные повреждения котельным агрегатам, если не будут приняты специальные меры их защиты. Опасность ее заключается еще и в том, что созданные, ею в период простоя коррозионные очаги продолжают действовать и в процессе работы.

Для предохранения котельных агрегатов от стояночной коррозии производят их консервацию.

в) Межкристаллитная коррозия

Межкристаллитная коррозия возникает в заклепочных швах и вальцовочных соединениях паровых котельных агрегатов, которые смываются котловой водой. Она характеризуется появлением в металле трещин, вначале весьма тонких, незаметных для глаза, которые развиваясь, превращаются в большие видимые трещины. Они проходят между зернами металла, почему эта коррозия и называется межкристаллитной. Разрушение металла при этом происходит без деформации, поэтому эти разрушения называют хрупкими.

Опытом установлено, что межкристаллитная коррозия возникает лишь при одновременном наличии 3-х условий:

1) Высоких растягивающих напряжений в металле, близких к пределу текучести.
2) Неплотности в заклепочных швах или вальцовочных соединениях.
3) Агрессивных свойств котловой воды.

Отсутствие одного из перечисленных условий исключает появление хрупких разрушений, что и используют на практике для борьбы с межкристаллитной коррозией.

Агрессивность котловой воды определяется составом растворенных в ней солей. Важное значение имеет содержание едкого натра, который при высоких концентрациях (5-10%) реагирует с металлом. Такие концентрации достигаются в неплотностях заклепочных швов и вальцовочных соединений, в которых происходит упаривание котловой воды. Вот почему наличие неплотностей может обусловить появление хрупких разрушений при соответствующих условиях. Кроме этого, важным показателем агрессивности котловой воды является относительная щелочность — Щот.

г) Пароводяная коррозия

Пароводяной коррозией называется разрушение металла в результате химического взаимодействия с водяным паром: ЗFe + 4Н20 = Fe304 + 4Н2
Разрушение металла становится возможным для углеродистых сталей при увеличении температуры стенки труб до 400°С.

Продуктами коррозии является газообразный водород и магнетит. Пароводяная коррозия имеет как равномерный, так и локальный (местный) характер. В первом случае на поверхности металла образуется слой продуктов коррозии. Местный характер коррозии имеет вид язв, бороздок, трещин.

Основной причиной возникновения паровой коррозии является нагрев стенки трубки до критической температуры, при которой ускоряется окисление металла водой. Поэтому борьба с пароводяной коррозией осуществляется путем устранения причин, вызывающих перегрев металла.

Пароводяную коррозию нельзя устранить путем какого-то изменения или улучшения водно-химического режима котельного агрегата, так как причины этой коррозии кроются в топочных и внутрикотловых гидродинамических процессах, а также условиях эксплуатации.

д) Подшламовая коррозия

Этот вид коррозии происходит под слоем шлама, образовавшегося на внутренней поверхности трубы котельного агрегата, вследствие питания котла недостаточно очищенной водой.

Повреждения металла, возникающие при подшламовой коррозии, имеют локальный (язвенный) характер и располагаются обычно на полупериметре трубы, обращенном в топку. Образующиеся язвы имеют вид раковин диаметром до 20 мм и более, заполненных окислами железа, создающими «бугорок» под язвой.

Защита от коррозии энергетического оборудования

Коррозия и защита парогенераторов ТЭС

Энергетические блоки ТЭС (теплоэлектростанций) работают в тяжелых коррозионных условиях: высокая температура (515 — 530°С) и давление (15 МПа) горячего пара. Некоторые узлы изготавливаются из достаточно дешевых марок коррозионностойкой жаропрочной стали, которая устойчива в продуктах сгорания топлива. Основной причиной поломок парогенераторов является отказ самых теплонагруженных его частей, а именно: выходных и лобовых змеевиков, топочных экранов, неохлаждаемых подвесок и опор конвективных пакетов, пароперегревателей острого пара и т.д. Оборудование расположено по блочной системе, поэтому замена какого-либо узла, который вышел из строя в результате коррозии металла – достаточно трудоемкое и нелегкое дело. Чтоб ремонт проводился реже – стараются использовать качественные материалы.

На теплоэлектростанциях в качестве топлива используется угольная пыль и мазут. Твердотопливные котлы набирают все большую популярность. В мазутном топливе содержится большое количество веществ, очень агрессивно влияющих на металлы. Это соли натрия, ванадий, сера. При сгорании мазута образуется черный налет на всех поверхностях нагрева (тепловые экранные трубы). Его достаточно трудно удалить, т.к. он имеет твердую структуру. В процессе работы на некоторых участках с отложениями их температура достигает 600 °С.

Читать еще:  Инструкции по пожарной безопасности для общежития

В радиационной части топочные экраны разрушаются под воздействием газовой коррозии. При сгорании угольной пыли на поверхностях нагрева скапливается зола. Она состоит, в основном, из кислых и основных оксидов (SO3, CaO, SO2, Na2O, Al2O3, MgO, K2O, Fe2O3), а также Cl2 и H2S.

Именно при сгорании топлива образуется газовая среда слабоокислительного характера. Когда пылеугольное топливо горит не устойчиво, экран топочной камеры может вступить в контакт с факелом. В таком случае образуется восстановительная среда.

Плотный защитный слой в некоторой степени уменьшает скорость высокотемпературной коррозии поверхности нагрева, но если в состав отложений входят хлориды и сульфаты щелочных металлов, оксид ванадия – при температуре в 570 °С образуется расплав и коррозия усиливается.

Для защиты парогенераторов теплоэлектростанций (ТЭС) от коррозии, используются следующие методы: регулярная очистка нагреваемых поверхностей от зольных отложений, использование жаропрочных и коррозионно-стойких сплавов и сталей, введение присадок в топливо (иногда применяются ингибиторы), нанесение защитных покрытий.

При изготовлении оборудования парогенераторов основным материалом является сталь перлитного класса. Часто применяется сталь, легированная ванадием. Хорошей устойчивостью к межкристаллитной коррозии в продуктах сгорания мазута (с высоким содержанием примесей серы) при температуре 650 °С обладает аустенитная сталь марки ДИ-59. Она содержит в своем составе ниобий, марганец и медь.

Если сталь рекомендована для изготовления труб пароперегревателей, лучше, когда в ее составе будет марганец, а не никель, т.к. у первого температура плавления сульфидных эвтектик и сульфидов выше. Подвески и шипы делают из коррозионно-стойких, но малопластичных сильхромов (система Fe – Cr – Si) и сихромалей (Fe – Cr – Si – Al).

Не рекомендовано использовать сплавы, с добавками молибдена, т.к. в продуктах сгорания мазута они не обладают удовлетворительной коррозионной стойкостью. Хром и алюминий уменьшают шанс возникновения ванадиевой коррозии.

Температура подвесок и стоек труб газоходов порой превышает температуру поверхностей нагрева, поэтому для их изготовления применяют сплавы с хромом и никелем (хрома должно быть не меньше 50%). На твердотопливных установках в таких целях используется сталь Х23Н18.

Из аустенитных хромоникелевых сталей, легированных бором, вольфрамом, молибденом и ниобием, изготавливают парогенераторы, которые работают на буром угле либо природном газе (малоагрессивные топлива) и при высоких температурах.

В практике защиты от коррозии парогенераторов различного рода покрытия широкого применения не нашли. Это обуславливается проблематичностью ремонта. Постоянно контролировать их состояние также сложно.

Для увеличения эрозионной стойкости некоторых деталей аппаратуры (форсунок, в частности) используется диффузионное хромирование. В результате данного процесса в 20 – 25 раз увеличивается стойкость к эрозионному разрушению аустенитных хромоникелевых сталей.

Чтоб защитить хромоникелевые подвески труб, их силицируют. Тогда они становятся устойчивыми при контакте с золой, которая содержит оксид ванадия. Если температура не превышает 700 °С – подвески и огневые стенки покрывают боратными системами.

Для уменьшения разрушений необходимо не только использовать материалы с высокой коррозионной стойкостью, но и принимать все меры для уменьшения агрессивности среды. Например, чтоб разрыхлить золовые отложения, снизить их коррозионную активность и облегчить их удаление, вводят в топливо специальные присадки. Из них можно отметить 10-% водный раствор нитрита магния. Он затрудняет припекание золы к нагревательным зонам, а также повышает ее температуру плавления. Такое же действие оказывают и металлоорганические соединения железа, бария и меди. На 1 тонну мазута израсходуется всего 2 килограмма данного вещества.

При введении в угольную пыль 1,5% CaCl2•2H2O при температуре до 700 °С, уменьшается серная коррозия малоуглеродистой стали, а в отходящих газах содержание серы понижается.

Внутренняя поверхность труб покрыта окислами железа и другими веществами, которые способствуют повышению тепловых напряжений. Чтоб эти напряжения уменьшить, необходимо периодически промывать систему кислотными растворами с последующей их нейтрализацией.

Коррозия теплоэнергетического оборудования (паровых котлов, трубопроводов)

Теплоэнергетическое оборудование – это теплосети, установки водоподготовки, паровых котлов, конденсатно-питательного тракта и т.п.

Паровые котлы и установки конденсатно-питательного тракта вступают в контакт с водой, которая подготавливается термически или химически. Для защиты их от коррозии проводят обескислороживание, например, используя для этого гидразинную или термическую обработку (иногда два этих метода вместе).

Паровой котел представляет собой емкость из низколегированной или малоуглеродистой стали, которая обогревается горячими газами. Выходя из парового котла, горячий газ может далее подаваться на перегреватель, где он нагревается еще сильнее. Сталь для изготовления перегревателей используют с большим содержанием легирующих добавок. Для того, чтоб обеспечить максимальную теплопередачу, тепловые трубы формируются в виде пучка, а нагревающий их газ подается в межтрубное пространство (иногда может подаваться прямо в трубы). После того, как пар был использован или совершил работу, он попадает в конденсатор трубчатого типа. Чаще всего конденсаторы изготовлены из медных сплавов. Для охлаждения используют любую воду (пресная, соленая, даже с загрязнениями и примесями). Далее, когда пар перешел в конденсат, он возвращается в котел и происходит новый цикл.

В водных средах при высокой температуре на железе образуется оксидная двухслойная пленка. Для защиты от коррозии паровых котлов широко используется обескислороживание. А в обработанной воде таким способом оксидная пленка представляет собой магнетит Fe3O4. В состав внутреннего защитного слоя входят плотноупакованные кристаллиты, которые очень плотно сцепляются с металлической подложкой. Их диаметр около 0,02 – 0,2 мкм. Внешний слой состоит из кристаллов диаметром 1 мкм, которые упакованные не плотно.

В растворах с высоким или низким значением рН защитный слой магнетитов растворяется, и металлическая подложка в большей степени подвергается коррозионному разрушению.

Если в воде, предназначенной для паровых котлов, присутствует растворенный кислород, то его влияние несколько сложнее.

Предупредить коррозию паровых котлов можно. Для этого необходимо соблюдать режимы водоподготовки и работы самих установок. Кроме того, использовать специальные стали.

Работает в агрессивной коррозионной среде и оборудование теплосетей (трубопроводы, магистрали). Коррозию таких установок условно можно разделить на: внешнюю (со стороны грунта) и внутреннюю (со стороны воды). Коррозия латуней проявляется в виде обесцинкования, а сталей (в горячей воде) — носит язвенный характер. Для защиты установок теплосети от внутренней коррозии, используют герметик АГ-2. Он изолирует зеркало воды в баках-аккумуляторах. Также проводят вакуумную деаэрацию воды и стабилизацию, силикатную обработку. Используют пленкообразующие амины. Проводят различные мероприятия эксплуатационного и конструктивного характера.

Коррозионное разрушение трубопроводов и магистралей со стороны грунта обусловлено постоянным контактом с электрохимически агрессивной средой и воздействием блуждающих токов. Основные способы защиты от коррозии труб это: протекторная защита, электрохимическая защита катодным током и нанесение разнообразных покрытий.

Ссылка на основную публикацию
Adblock
detector