17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Какие особенности имеют клетки проводящей ткани

Биология

В биологии тканью называют группу клеток, имеющих сходное строение и происхождение, а также выполняющих одинаковые функции. У растений наиболее разнообразные и сложно устроенные ткани развились в процессе эволюции у покрытосеменных (цветковых). Органы растений обычно образованы несколькими тканями. Можно выделить шесть типов тканей растений: образовательную, основную, проводящую, механическую, покровную, секреторную. Каждая ткань включает подтипы. Между тканями, а также внутри них бывают межклетники — промежутки между клетками.

Образовательная ткань

Благодаря делению клеток образовательной ткани растение увеличивается в длину и толщину. При этом часть клеток образовательной ткани дифференцируется в клетки других тканей.

Клетки образовательной ткани достаточно мелкие, плотно прилегают друг к другу, имеют крупное ядро и тонкую оболочку.

Образовательная ткань в растениях находится в конусах нарастания корня (кончик корня) и стебля (верхушка стебля), бывает в основаниях междоузлий, также образовательная ткань составляет камбий (который обеспечивает рост стебля в толщину).

Клетки конуса нарастания корня. На фото виден процесс деления клеток (расхождение хромосом, растворение ядра).

Паренхима, или основная ткань

К паренхиме относят несколько разновидностей тканей. Различают ассимиляционную (фотосинтезирующую), запасающую, водоносную и воздухоносную основную ткань.

Фотосинтезирующая ткань состоит из клеток, содержащих хлорофилл, т. е. зеленых клеток. Эти клетки имеют тонкие стенки, содержат большое количество хлоропластов. Основная их функция — фотосинтез. Ассимиляционная ткань составляет мякоть листьев, входит в состав коры молодых стеблей деревьев и стебли трав.

В клетках запасающей ткани накапливаются запасы питательных веществ. Эта ткань составляет эндосперм семян, входит в состав клубней, луковиц и др. Сердцевина стебля, внутренние клетки коры стебля и корня, сочный околоплодник также обычно состоят из запасающей паренхимы.

Водоносная паренхима свойственна лишь ряду растений, обычно засушливых мест обитания. В клетках этой ткани накапливается вода. Водоносная ткань может быть как в листьях (алоэ), так и в стебле (кактусы).

Воздухоносная ткань свойственна водным и болотным растениям. Ее особенностью является наличие большого количества межклетников, содержащих воздух. Это облегчает газообмен растению, когда он затруднен.

Проводящая ткань

Общей функцией различных проводящих тканей является проведение веществ от одних органов растения к другим. В стволах древесных растений клетки проводящей ткани расположены в древесине и лубе. Причем в древесине расположены сосуды (трахеи) и трахеиды, по которым перемещается водный раствор от корней, а в лубе — ситовидные трубки, по которым перемещаются органические вещества от фотосинтезирующих листьев.

Сосуды и трахеиды — это мертвые клетки. По сосудам водный раствор поднимается быстрее, чем по трахеидам.

Ситовидные трубки являются живыми, но безъядерными клетками.

Покровная ткань

К покровной ткани относится кожица (эпидермис), пробка, корка. Кожица покрывает листья и зеленые стебли, это живые клетки. Пробка состоит из мертвых клеток, пропитанных жироподобным веществом, не пропускающим воду и воздух.

Главные функции любой покровной ткани — это защита внутренних клеток растения от механического повреждения, высыхания, проникновения микроорганизмов, перепадов температуры.

Пробка является вторичной покровной тканью, так как возникает на месте кожицы у стеблей и корней многолетних растений.

Корка состоит из пробки и отмерших слоев основной ткани.

Механическая ткань

Для клеток механической ткани характерны сильно утолщенные одревесневшие оболочки. Функции механической ткани — это придание телу и органам растений прочности и упругости.

В стеблях покрытосеменных растений механическая ткань может располагаться одним целостным слоем или же отдельными тяжами, отстоящими друг от друга.

В листьях волокна механической ткани обычно располагаются рядом с волокнами проводящей ткани. Вместе они образуют жилки листа.

Секреторная, или выделительная ткань растений

Клетки секреторной ткани выделяют различные вещества, и поэтому функции у этой ткани разные. Выделительные клетки у растений выстилают смоляные и эфиромасличные ходы, образуют своеобразные железы и железистые волоски. К секреторной ткани принадлежат нектарники цветков.

Смолы выполняют защитную функцию при повреждении стебля растения.

Нектар привлекает насекомых-опылителей.

Бывают секреторные клетки, выводящие продукты обмена, например, соли щавелевой кислоты.

Секреты тканей растений

Основное содержание.

  1. Классификация проводящей ткани.
  2. Характеристика ксилемы.
  3. Характеристика флоэмы.

В растительном организме, так же как и в организме животных имеется транспортные системы, обеспечивающие доставку питательных веществ по назначению. На сегодняшнем занятии разговор пойдёт о проводящих тканях растения.

Проводящие ткани – ткани, по которым происходит массовое передвижение веществ, возникли как неизбежное следствие приспособление к жизни на суше. От корня к листьям движется восходящий, или транспирационный, ток водных растворов солей. Ассимиляционный, нисходящий ток органических веществ направляется от листьев к корням. Восходящий ток осуществляется почти исключительно по сосудам древесины (ксилемы), а нисходящий – по ситовидным элементам луба (флоэмы).

1. Восходящий ток веществ по сосудам ксилемы 2. Нисходящий ток веществ по ситовидным трубкам флоэмы

Клетки проводящей ткани характеризуются тем, что они вытянуты в длину и имеют форму трубочек с более или менее широким диаметром (в общем, напоминают сосуды у животных).

Существуют первичные и вторичные проводящие ткани.

Читать еще:  Проводящие ткани образуются из

Вспомним классификацию тканей на группы по форме клеток.

Ксилема и флоэма – это сложные ткани, состоящие из трёх основных элементов.

Таблица «Основные элементы ксилемы и флоэмы»

Проводящие элементы ксилемы.

Наиболее древними проводящими элементами ксилемы являются трахеиды (рис.1)– это вытянутые клетки с заостренными концами. Они дали начало древесинным волокнам.

Трахеиды имеют одревесневшую клеточную стенку с различной степенью утолщения, кольчатую, спиралевидную, точечную, пористую и т.д. форму (рис. 2). Фильтрация растворов происходит через поры, поэтому передвижение воды в системе трахеид совершается медленно.

Трахеиды встречаются у спорофитов всех высших растений, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных, являются существенными проводящими элементами ксилемы. Прочные стенки трахеид позволяют им выполнять не только водопроводящие функции, но и механические. Часто они являются единственными элементами, придающими органу прочность. Так, например, у хвойных деревьев в древесине отсутствует специальная механическая ткань, и механическая прочность обеспечивается трахеидами.

Длина трахеид колеблется от десятых долей миллиметра до нескольких сантиметров.

Рис. 2 Трахеиды и их расположение относительно друг друга

Рис. 2 Трахеиды и их расположение относительно друг друга

Сосуды – характерные проводящие элементы ксилемы покрытосеменных. Они представляют собой очень длинные трубки, образовавшиеся в результате слияния ряда клеток, соединяющихся «конец в конец». Каждая из клеток, образующих сосуд ксилемы, соответствует трахеиде и называется члеником сосуда. Однако членики сосуда короче и шире трахеид. Первая ксилема, появляющаяся в растении в процессе развития, носит название первичная ксилема; она закладывается в корнях и на верхушках побегов. Дифференцированные членики сосудов ксилемы появляются рядами на концах прокамбиальных тяжей. Сосуд возникает, когда соседние членики в данном ряду сливаются в результате разрушения перегородок между ними. Внутри сосуда сохраняются в виде ободков остатки разрушенных торцевых стенок.

Рис. 3 Расположение первичных и вторичных проводящих тканей в корне

Расположение первичных и вторичных проводящих тканей в стебле

Первые по времени образования сосуды (рис. 3) – протоксилема – закладываются на верхушке осевых органов, непосредственно под верхушечной меристемой, там, где окружающие их клетки ещё продолжают вытягиваться. Зрелые сосуды протоксилемы способны растягиваться одновременно с вытягиванием окружающих клеток, поскольку их целлюлозные стенки ещё не сплошь одревеснели – лигнин (особое органическое вещество, вызывающее одревесневание стенок клеток) откладывается в них кольцами или по спирали. Эти отложения лигнина позволяют трубкам сохранять достаточную прочность во время роста стебля или корня.

Рис. 4 утолщения клеточных стенок сосудов

С ростом органа появляются новые сосуды ксилемы, которые претерпевают более интенсивную лигнификацию и завершают своё развитие в зрелых частях органа, — формируется метаксилема. Тем временем самые первые сосуды протоксилемы растягиваются, а затем разрушаются. Зрелые сосуды метаксилемы не способны растягиваться и расти. Это мёртвые, жёсткие, полностью одревесневшие трубки. Если бы их развитие завершилось до того, как закончилось вытягивание окружающих живых клеток, то они бы очень сильно мешали этому процессу.

Утолщения клеточных стенок сосудов так же, как и у трахеид, бывают кольчатыми, спиральными, лестничными, сетчатыми и пористыми (рис. 4 и рис. 5).

Рис. 5 Типы перфорации сосудов

Длинные полые трубки ксилемы – идеальная система для поведения воды на большие расстояния с минимальными помехами. Так же как и в трахеидах, вода может переходить из сосуда в сосуд через поры или через неодревесневающие части клеточной стенки. Вследствие одревесневания клеточные стенки сосудов обладают высокой прочностью на разрыв, что тоже очень важно, потому что благодаря этому трубки не спадаются, когда вода движется в них под натяжением. Вторую свою функцию – механическую – ксилема также выполняет благодаря тому, что она состоит из ряда одревесневших трубок.

Проводящие элементы флоэмы. Ситовидные трубки образуются из прокамбия в первичной флоэме ( протофлоэма) и из камбия во вторичной флоэме ( метафлоэма). По мере того как растут окружающие её ткани, протофлоэма растягивается и значительная её часть отмирает, перестает функционировать. Метафлоэма созревает уже после того, как закончится растяжение.

Членики ситовидных трубок имеют весьма характерное строении. У них более тонкие клеточные стенки, состоящие из целлюлозы и пектиновых веществ, и этим они напоминают паренхимные клетки, однако их ядра при созревании отмирают, а от цитоплазмы остаётся только тонкий слой, прижатый к клеточной стенке. Несмотря на отсутствие ядра, членики ситовидных трубок остаются живыми, но их существование зависит от примыкающих к ним клеток-спутниц, развивающихся из одной с ними меристематической клетки (рис. 6).

Вопрос: — Какие клетки животных, являясь безъядерными, также остаются живыми?

Членик ситовидной трубки и его клетка-спутница составляют вместе одну функциональную единицу; у клетки-спутницы цитоплазма очень густая и отличается высокой активностью, на что указывает присутствие многочисленных митохондрий и рибосом. В структурном и функциональном отношении клетка-спутница и ситовидная трубка тесно связаны и совершенно необходимы для их функционирования: в случае гибели клеток-спутников погибают и ситовидные элементы.

Рис. 6 Ситовидная трубка и клетка спутница

Характерной чертой ситовидных трубок является наличие ситовидных пластинок (рис. 7). Эта их особенность сразу же бросается в глаза при рассматривании в световом микроскопе. Ситовидная пластинка возникает на месте соединения торцевых стенок двух соседних члеников ситовидных трубок. Вначале через клеточные стенки проходят плазмодесмы, но затем их каналы расширяются и образуют поры, так что торцевые стенки приобретают вид сита, через которое раствор перетекает из одного членика в другой. В ситовидной трубке ситовидные пластинки располагаются через определённые промежутки, соответствующие отдельным членикам этой трубки.

Читать еще:  Сонник наводнение на улице грязная вода

Рис. 7 Ситовидные пластинки ситовидных трубок

Основные понятия: Флоэма (протофлоэма, метафлоэма), ситовидные трубки, клетки-спутницы. Ксилема (протоксилема, метаксилема) трахеиды, сосуды.

Ответьте на вопросы:

  1. Чем представлена ксилема у голосеменных и покрытосеменных растений?
  2. В чём заключается отличие в строении флоэмы у данных групп растений?
  3. Объясните противоречие: сосны начинают вторичный рост рано и образуют много вторичной ксилемы, но растут медленней и уступают в росте лиственным породам.
  4. В чём заключается более упрощённое строение древесины хвойных?
  5. Почему сосуды являются более совершенной проводящей системой, чем трахеиды?
  6. Чем вызвана необходимость образования утолщений на стенках сосудов?
  7. В чём заключаются принципиальные различия между проводящими элементами флоэмы и ксилемы? С чем это связано?
  8. Какова функция клеток-спутниц?

Виды тканей растений и их функции

Содержание

  1. Виды тканей у высших растений
  2. Образовательная ткань растений
  3. Покровная ткань растений
  4. Механическая ткань растений
  5. Проводящие ткани растений
  6. Основная ткань
  7. Выделительные ткани
  8. Что мы узнали?

Бонус

  • Тест по теме

Виды тканей у высших растений

Выделяют следующие виды тканей растений:

  • образовательные (меристема);
  • покровные;
  • механические;
  • проводящие;
  • основные;
  • выделительные.

Все эти ткани имеют свои особенности строения и отличаются друг от друга выполняемыми функциями.

Рис.1 Ткани растений под микроскопом

Образовательная ткань растений

Образовательная ткань – это первичная ткань, из которой образуются все другие ткани растения. Она состоит из особых клеток, способных к многократному делению. Именно из этих клеток состоит зародыш любого растения.

Эта ткань сохраняется и у взрослого растения. Она располагается:

  • внизу корневой системы и на верхушках стеблей (обеспечивает рост растения в высоту и развитие корневой системы) – верхушечная образовательная ткань;
  • внутри стебля (обеспечивает рост растения в ширину, его утолщение) – боковая образовательная ткань;

Покровная ткань растений

Покровная ткань относится к защитным тканям. Она необходима для того, чтобы защищать растение от резких перепадов температуры, от излишнего испарения воды, от микробов, грибов, животных и от всякого рода механических повреждений.

Покровные ткани растений образованы клетками, живыми и мертвыми, способными пропускать воздух, обеспечивая необходимый для роста растения газообмен.

Строение покровной ткани растений таково:

  • сначала расположена кожица или эпидерма, которая покрывает листья растения, стебли и наиболее уязвимые части цветка; клетки кожицы живые, эластичные, они защищают растение от излишней потери влаги;
  • далее находится пробка или перидерма, которая также располагается на стеблях и корнях растения (там, где образуется слой пробки, кожица отмирает); пробка защищает растение от неблагоприятных воздействий окружающей среды.

Также выделяют такой вид покровной ткани как корка. Эта самая прочная покровная ткань, пробка в данном случае образуется не только на поверхности, но и в глубине, причём верхние ее слои потихоньку отмирают. По сути, корка состоит из пробки и мёртвых тканей.

Рис.2 Корка – вид покровной ткани растения

Для дыхания растения в корке образуются трещинки, на дне которых располагаются специальные отростки, чечевички, через которые и происходит газообмен.

Механическая ткань растений

Механические ткани придают растению нужную ему прочность. Именно благодаря их наличию растение может выдерживать сильные порывы ветра и не ломаются под струями дождя и под тяжестью плодов.

Выделяют два основных вида механических тканей: лубяные и древесные волокна.

Проводящие ткани растений

Проводящая ткань обеспечивает транспортировку воды с растворёнными в ней минералами.

Эта ткань образует две транспортные системы:

  • восходящую (от корней к листьям);
  • нисходящую (от листьев ко всем остальным частям растений).

Восходящая транспортная система состоит из трахеид и сосудов (ксилема или древесина), причём сосуды более совершенные проводящие средства, чем трахеиды.

В нисходящих системах ток воды с продуктами фотосинтеза проходит по ситовидным трубкам (флоэма или луб).

Ксилема и флоэма образуют сосудисто-волокнистые пучки – «кровеносную систему» растения, которая пронизывает его полностью, соединяя в одно целое.

Основная ткань

Основная ткань или паренхима – является основой всего растения. В неё погружены все остальные виды тканей. Это живая ткань и выполняет она разные функции. Именно из-за этого выделяются разные её виды (информация о строении и функциях разных видов основной ткани представлена в таблице ниже).

Особенности строения проводящей ткани растений

Строение проводящей ткани растений достаточно сложное, так как содержат разные структурные и функциональные элементы. Она включает ксилему (древесину) и флоэму (луб), по которым осуществляется движение воды в двух направлениях.

К ксилеме относят следующие ткани:

  • Собственно проводящие (трахеиды и трахеи);
  • механические (древесинные волокна);
  • паренхиматозные.
Читать еще:  Почему нельзя мыться в горячей воде

Трахеи — представляют собой трубки с утолщенными оболочками. Они образовались из ряда вытянутых клеток, размещенных друг над другом. Продольные оболочки клеток одревесневают и происходит неравномерное их утолщение, а поперечные стенки разрушаются, формируя сквозные проемы. Трахеи длиной, в среднем, 10см, но у некоторых растений — до 2 (дуб) или 3-5м (тропические лианы).

Трахеиды — одноклеточные элементы веретеновидной формы с заострениями на концах. Длина их — около 1мм, но может быть 4-7мм (сосна). Так же, как и трахеи, это отмершие клетки с одревесневшими и утолщенными стенками. Утолщения имеют вид колец, спиралей, сетки. Трахеиды отличаются от трахей отсутствием отверстий, поэтому движение жидкости здесь идет сквозь поры. Они высокопроницаемы для растворенных в воде минералов.

Общность строения трахей и трахеид объясняется единой функцией. По трахеям и трахеидам идет восходящее движение минерализованной воды от корней в надземную часть растения. Подробнее про поглощение воды корнем.

Проводящие ткани растений их строение и функции кратко излажены в таблице.

Особенности строения морфологического строения листа

Лист – чрезвычайно важный орган растения. Лист – часть побега. Основными функциями его являются фотосинтез и транспирация. Лист характеризуется высокой морфологической пластичностью, разнообразием форм и большими приспособительными возможностями. Основание листа может расширяться в виде косых листовидных образований – прилистников с каждой стороны листа. В некоторых случаях они настолько велики, что играют определённую роль в фотосинтезе. Прилистники бываю свободными или приросшими к черешку, они могут смещаться на внутреннюю сторону листа и тогда их называют пазушными. Основания листьев могут быть превращены во влагалище, окружающее стебель и препятствующие его сгибанию.

Внешнее строение листа

Листовые пластинки различаются по размерам: от нескольких миллиметров до 10-15 метров и даже 20 (у пальм). Продолжительность жизни листьев не превышает нескольких месяцев, у некоторых – от 1,5 до 15 лет. Размер и форма листьев являются наследственными признаками.

Части листа

  • Лист – боковой вегетативный орган, растущий от стебля, имеющий двустороннюю симметрию и зону роста при основании. Лист обычно состоит из листовой пластинки, черешка (исключением являются сидячие листья); для ряда семейств характерны прилистники. Листья бываю простые, имеющие одну листовую пластинку, и сложные – с несколькими листовыми пластинками (листочками).
  • Листовая пластинка – расширенная, обычно плоская часть листа, выполняющая функции фотосинтеза, газообмена, транспирации и у некоторых видов – вегетативного размножения.
  • Основание листа (листовая подушка) – часть листа, соединяющая его со стеблем. Здесь находится образовательная ткань, дающая рост листовой пластинке и черешку.
  • Прилистники – парные листовидные образования в основании листа. Они могут опадать при развёртывании листа или сохраняться. Защищают пазушные боковые почки и вставочную образовательную ткань листа.
  • Черешок – суженная часть листа, соединяющая своим основанием листовую пластинку со стеблем. Он выполняет важнейшие функции: ориентирует лист по отношению к свету, является местом расположения вставочной образовательной ткани, за счёт которой растёт лист. Кроме этого, он имеет механическое значение для ослабления ударов по листовой пластинке от дождя, града, ветра и пр.

Простые и сложные листья:

Лист может иметь одну (простой), несколько или множество листовых пластинок. Если последние снабжены сочленениями, то такой лист называется сложным. Благодаря сочленениям на общем черешке листа листочки сложных листьев опадают поодиночке. Однако у некоторых растений сложные листья могут опадать и целиком.

По форме цельные листья, различают как лопастные, раздельные и рассечённые.

Лопастным называю лист, у которого вырезы по краям пластинки доходят до одной четверти его ширины, а при большем углублении, если вырезы достигают более четверти ширины пластинки, лист называется раздельным. Лопасти раздельного листа называют долями.

Рассечённым называют лист, у которого вырезы по краям пластинки доходят почти до средней жилки, образуя сегменты пластинки.

Раздельные и рассечённые листья могут быть пальчатые и перистые, дважды пальчатые и дважды перистые и т.д. соответственно этому различают пальчато-раздельный лист, перисторассечённый лист; непарно-перисторассечённый лист у картофеля. Он состоит из конечной доли, нескольких пар боковых долек, между которыми располагаются ещё меньшие дольки.

Если пластинка удлинённая, а доли или сегменты её треугольные, лист называют струговидным (одуванчик); если боковые доли неравновеликие, к основанию уменьшаются, а конечная доля крупная и округлая, получается лировидный лист (редька).

Что касается сложных листьев, то среди них различают тройчатосложные, пальчатосложные и перистосложные листья. Если сложный лист состоит из трёх листочков, он называется тройчатосложным, или тройчатым (клён). Если черешочки листочков прикрепляются к главному черешку как бы в одной точке, а самые листочки расходятся радиально, лист называется пальчатосложным (люпин). Если на главном черешке боковые листочки расположены с обеих сторон по длине черешка, лист называется перистосложным.

Если такой лист заканчивается наверху непарным одиночным листочком, получается, непарноперистый лист. Если же конечного нет, лист называется парноперистым.

Если каждый листочек перистосложного листа, в свою очередь, является сложным, то получается дважды перистосложный лист.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector