1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

методы решения задач с параметрами

X Международная студенческая научная конференция Студенческий научный форум — 2018

ПРИЁМЫ И МЕТОДЫ РЕШЕНИЯ ЗАДАЧ С ПАРАМЕТРОМ

Что означает «решить задачу с параметром»?

Как начинать решать такие задачи? И что означает «решить параметрическую задачу»? Прежде всего, надо сделать то, что делается при решении любого уравнения или неравенства: привести заданное уравнение (неравенство) к более простому виду, например, разложить рациональное выражение на множители, разложить тригонометрический многочлен на множители, избавиться от модулей, логарифмов, и т.д. Решая такие задания нужно множество раз обращаться к его текстовой части с целью выполнения сформулированного там условия.

Проще говоря, решить задачу с параметром – значит указать, при каких значениях параметров существуют решения и каковы они.

Каковы основные типы задач с параметрами?

1. Уравнения (неравенства), которые надо решить либо для любого значения параметра, либо для значений параметра, принадлежащих заранее оговоренному множеству.

Например: При каких значениях параметра уравнение имеет единственный корень?

2. Уравнения (неравенства), для которых необходимо определить количество решений в зависимости от значения параметра.

Например: При каких уравнение имеет ровно три корня?

3. Уравнения (неравенства), для которых требуется найти все значения параметра, при которых указанные уравнения (неравенства) имеют заданное число решений ( или не имеют решений, или имеют бесконечно много решений).

Например: Найдите все значения параметра а при каждом из которых уравнение -13а+5 имеетровно два корня.

4. Уравнения (неравенства), для которых при искомых значениях параметра множество решений удовлетворяет заданным условиям в области определения.

Например: При каких значениях уравнение имеет ровно одно решение на промежутке

Каковы основные способы (методы) решения задач с параметром?

Способ I (аналитический). Это способ применения стандартных операций при решении уравнений (неравенств) без параметра, он же, на мой взгляд, и самый трудный. При решении заданий аналитическим способом требуется знать большой объем математической информации и уметь грамотно это применять.

Привем решение задания с параметром, которое решается аналитическим способом:

Найдите все значенияа, при каждом из которых уравнение имеет хотя бы один корень.

Рассмотрим функции и

1.Пусть , тогда (раскрываем модуль со знаком минус) , . Получаем, что угловой коэффициент функции равен 4 либо 12, (так как может быть одинаковый знак в зависимости от числа х.) При таких значениях график функции возрастает (так как коэффициент больше 0)

2.Пусть , тогда , Получаем, что угловой коэффициент функции равен -4 либо -12. При таких значениях график функции убывает (так как коэффициент меньше 0)

3.При х=0, тогда Получаем, что = Функция возрастает при и убывает при , поэтому =

Исходное уравнение имеет один корень, когда

откуда , либо , где а=-5.

Ответ: -5,

Способ II (графический). Наиболее понятный и очень наглядный способ решения. Суть его заключается в том, что в зависимости от задачи (с переменной x и параметром a) рассматриваются графики или в координатной плоскости (x; y), или в координатной плоскости (x; a). Естественно, что для этого просто необходимо знать типы элементарных функций (степенные, показательные, логарифмические, тригонометрические, обратные тригонометрические), их свойства и графики (кстати, в ВУЗах эта тема в курсе высшей математики изучается одной из первых) Использование графического способа даже схематически помогает найти решение задачи. Решая задания графическим способом, я сделала следующее наблюдение: если в правой и левой части уравнения (неравенства) находятся функции разных типов, то можно смело утверждать, что решение аналитическим способом такой задачи бессмысленно, не нужно тратить на него время, а лучше сразу же создать графическую иллюстрацию задания. Наглядно и быстро!

Приведу пример задания 18 ЕГЭ, которое очень легко решается этим способом:

Найдите все значенияа, при каждом из которых уравнение имеет единственный корень.

Запишем уравнение в виде и рассмотрим две функции и .

Рассмотрим функцию , преобразовывая подкоренное выражение, получим:

. Таким образом, получаем.функцию, графиком которой является полуокружность с радиусом 2 в центре с точкой (-1;0), лежащей в верхней полуплоскости.

Графиком функции является прямая с угловым коэффициентом -а, проходящая через точку М (4;2)

Уравнение имеет единственный корень, если графики функций имеют одну общую точку (т.е. прямая касается или пересекает полуокружность в единственной точке).

Рассмотрим рисунок: 1. Прямая МС является касательной к полуокружности, следовательно, МС и полуокружность пересекаются в единственной точке. Так как МС параллельна оси ОХ ( У точки М (4,2) и С(-1,2)), то угловой коэффициент равен нулю. Таким образом, найдено первое значение а=0, при котором уравнение имеет один единственный корень.

2. Проведем прямую через точки М(4;2) и А(-3;0) ( так как координаты известны). Прямая МА пересекает график полуокружности в двух точках, но такая ситуация не удовлетворяет условию задачи. Поэтому надо найти значения углового коэффициента, при которых вышеназванное условие не выполняется. Чтобы найти значения –а подставим координаты точек М и А в функцию.

Получаем, -а=0 и а=.

При условии прямые имеют с графиком две общие точки, а это не удовлетворяет условию задачи.

3. Проведем прямую МВ через точки М(4;2) и В(1;0). Чтобы найти значения –а подставим координаты точек М и А в функцию.

Получаем –а= и –а=. При условии прямые имеют с графиком одну общие точки и это удовлетворяет условию задачи.Ответ: а=0,

Способ III (решение относительно параметра). При решении этим способом переменные x и a принимаются равноправными и выбирается та переменная, относительно которой аналитическое решение признается более простым. После проведенных упрощений возвращаются к исходному смыслу переменных x и a и заканчивают решение.

Ниже представлено решение параметрического задания данным способом:

3.При всех значениях параметра а решить уравнение: |х + 3| — a|x – 1| = 4.

Найдем значения х, при которых выражения, стоящие под знаком модуля обращаются в ноль. Получили х= -3 и х=1. Разобьем числовую прямую на 3 части полученными точками и решим 3 системы: 1) , если . Найденный будет решением, если .

2) , если . Найденный удовлетворяет нужному неравенству, следовательно, является решением при . Если же , то решением является любой .

В данной работе рассмотрены способы и приёмы решения задач с параметром. По нашему мнению наиболее эффективным является графический метод решения задач с параметром.

Корянов А.Г., Прокофьев А.А. Уравнения и неравенства с параметрами.

Читать еще:  Бальзамин садовый выращивание и уход

Графический метод решения задач с параметрами.

Эта тема является неотъемлемой частью изучения школьного курса алгебры. Цель данной работы более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Этот реферат поможет понять другим ученикам применение графического метода решения уравнений с параметрами, узнать о происхождении, развитии этого метода.

Скачать:

Предварительный просмотр:

Глава 1. Уравнения с параметром

История возникновения уравнений с параметром3

Глава 2. Виды уравнений с параметрами.

Квадратные уравнения…………………………………………. 7

Глава 3. Методы решения уравнений с параметром

Графический метод. История возникновения….…………………………9

Алгоритм решения графическим методом..……………. …………….10

Решение уравнения с модулем……………. …………………………….11

Я выбрала эту тему, так как она является неотъемлемой частью изучения школьного курса алгебры. Готовя данную работу, я ставила цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. Мой реферат поможет понять другим ученикам применение графического метода решения уравнений с параметрами, узнать о происхождении, развитии этого метода.

В современной жизни изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами.

Для решения таких уравнений графический метод является весьма эффективным, когда нужно установить, сколько корней имеет уравнение в зависимости от параметра α.

Задачи с параметрами представляют чисто математический интерес, способствуют интеллектуальному развитию учащихся, служат хорошим материалом для отработки навыков. Они обладают диагностической ценностью, так как с помощью них можно проверить знание основных разделов математики, уровень математического и логического мышления, первоначальные навыки исследовательской деятельности и перспективные возможности успешного овладения курса математики в высших учебных заведениях.

В моём реферате рассмотрены часто встречающиеся типы уравнений, и, я надеюсь, что знания, полученные мной в процессе работы, помогут мне при сдаче школьных экзаменов, ведь уравнения с параметрами по праву считаются одними из самых сложных задач в курсе школьной математики. Именно такие задачи и попадают в список заданий на едином государственном экзамене ЕГЭ.

История возникновения уравнений с параметром

Задачи на уравнения с параметром встречались уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. Индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В уравнении коэффициенты, кроме параметра , могут быть и отрицательными.

Квадратные уравнения у ал-Хорезми.

В алгебраическом трактате ал-Хорезми дается классификация линейных и квадратных уравнений с параметром а. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. αx 2 = bx.

2) «Квадраты равны числу», т. е. αx 2 = c.

3) «Корни равны числу», т. е. αx = c.

4) «Квадраты и числа равны корням», т. е. αx 2 + c = bx.

5) «Квадраты и корни равны числу», т. е. αx 2 + bx = c.

6) «Корни и числа равны квадратам», т. е. bx + c = αx 2 .

Формулы решения квадратных уравнений по ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи.

Вывод формулы решения квадратного уравнения с параметром в общем виде имеется у Виета, однако Виета признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в ХII в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принял современный вид.

Теорема, выражающая связь между параметрами, коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. Следующим образом: «Если b + d, умноженное на α минус α 2 , равно bc, то α равно b и равно d».

Чтобы понять Виета, следует вспомнить, что α, как и всякая гласная буква, означала у него неизвестное (наше х), гласные же b, d – коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает:

Если имеет место

Т. е. x 2 — (α –b)x + αb =0,

то x 1 = α, x 2 = b.

Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виета установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и поэтому при решении уравнений рассматривал лишь случаи, когда все корни положительны.

Параметр — независимая переменная, значение которой считается фиксированным или произвольным числом, или числом, принадлежащим заданному условием задачи промежутку.

Уравнение с параметром — математическое уравнение , внешний вид и решение которого зависит от значений одного или нескольких параметров.

Решить уравнение с параметром означает для каждого значения найти значения х, удовлетворяющие этому уравнению, а также:

  1. 1. Исследовать, при каких значениях параметров уравнение имеет корни и сколько их при разных значениях параметров.
  2. 2. Найти все выражения для корней и указать для каждого из них те значения параметров, при которых это выражение действительно определяет корень уравнения.

Рассмотрим уравнение α(х+k)= α +c, где α, c, k, x -переменные величины.

Системой допустимых значений переменных α, c, k, x называется любая система значений переменных, при которой и левая и правая части этого уравнения принимают действительные значения.

Пусть А – множество всех допустимых значений α, K– множество всех допустимых значений k, Х – множество всех допустимых значений х, C- множество всех допустимых значений c. Если у каждого из множеств A, K, C, X выбрать и зафиксировать соответственно по одному значению α, k, c, и подставить их в уравнение, то получим уравнение относительно x, т.е. уравнение с одним неизвестным.

Переменные α, k, c, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.

Параметры обозначаются первыми буквами латинского алфавита: α, b, c, d, …, k , l, m, n, а неизвестные – буквами x, y,z.

Два уравнения, содержащие одни и те же параметры, называются равносильными , если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения является решением второго и наоборот.

Виды уравнений с параметрами

Уравнения с параметрами бывают: линейные и квадратные.

1)Линейное уравнение. Общий вид:

α х = b, где х – неизвестное; α , b – параметры.

Читать еще:  Как соединить пластиковую трубу с чугунной

Для этого уравнения особым или контрольным значением параметра является то, при котором обращается в нуль коэффициент при неизвестном.

При решении линейного уравнения с параметром рассматриваются случаи, когда параметр равен своему особому значению и отличен от него.

Особым значением параметра α является значение α = 0.

1.Если, а ≠0 , то при любой паре параметров α и b оно имеет единственное решение х = .

2.Если, а =0,то уравнение принимает вид:0 х = b . В этом случае значение b = 0 является особым значением параметра b .

2.1. При b ≠ 0 уравнение решений не имеет.

2.2. При b =0 уравнение примет вид:0 х =0.

Решением данного уравнения является любое действительное число.

Квадратное уравнение с параметром.

α x 2 + bx + c = 0

где параметр α ≠0, b и с — произвольные числа

Если α =1, то уравнение называется приведённым квадратным уравнением.

Корни квадратного уравнения находятся по формулам

Выражение D = b 2 – 4 α c называют дискриминантом.

1. Если D> 0 — уравнение имеет два различных корня.

2. Если D 0, то х = а , х = — а, если а = 0, то х =0.

Задача 1. Сколько корней имеет уравнение | | x | – 2 | = a в зависимости от параметра a ?

Решение. В системе координат (x; y) построим графики функций y = | | x | – 2 | и y = a . График функции y = | | x | – 2 | изображен на рисунке.

Графиком функции y = α является прямая, параллельная оси Ox или с ней совпадающая (при a = 0).

Из графика видно, что:

Если a = 0, то прямая y = a совпадает с осью Ox и имеет с графиком функции y = | | x | – 2 | две общие точки; значит, исходное уравнение имеет два корня (в данном случае корни можно найти: x 1,2 = + 2).
Если 0 2, то прямая y = a будет иметь с графиком исходной функции две точки, то есть данное уравнение будет иметь два корня.

Ответ: если a 2, то два корня;
если a = 2, то три корня;
если 0 4. Значит, при a = 0 и a > 4 исходное уравнение имеет два корня.
Если 0 4, то два корня;
если 0 – 1; значит, уравнение (1) при этих значениях параметра имеет одно решение.

При a = – 1, a = – 2 графики пересекаются в двух точках; значит, при этих значениях параметра уравнение (1) имеет два корня.
При – 2 – 1, то одно решение;
если a = – 1, a = – 2, то два решения;
если – 2 1, то два корня.

Рассмотрим наиболее сложное уравнение.

Задача 5. При каких значениях параметра a уравнение

a x 2 + | x – 1 | = 0

имеет три решения?

Решение. 1. Контрольным значением параметра для данного уравнения будет число a = 0, при котором уравнение примет вид 0 + | x – 1 | = 0, откуда x = 1. Следовательно, при a = 0 уравнение имеет один корень, что не удовлетворяет условию задачи.

2. Рассмотрим случай, когда a 0.

Перепишем уравнение в следующем виде: a x 2 = – | x – 1 |. Заметим, что уравнение будет иметь решения только при a < 0.

В системе координат xOy построим графики функций y = | x – 1 | и y = a x 2 . График функции y = | x – 1 | изображен на рисунке. Графиком функции y = a x 2 является парабола, ветви которой направлены вниз, так как a < 0. Вершина параболы — точка (0; 0).

Уравнение будет иметь три решения только тогда, когда прямая y = – x + 1 будет касательной к графику функции y= a x 2 .

Пусть x 0 — абсцисса точки касания прямой y = – x + 1 с параболой y = a x 2 . Уравнение касательной имеет вид

y = y(x 0 ) + y ‘(x 0 )(x – x 0 ).

Запишем условия касания:

Данное уравнение можно решить без использования понятия производной.

Рассмотрим другой способ. Воспользуемся тем, что если прямая y = kx + b имеет единственную общую точку с параболой y = a x 2 + px + q, то уравнение a x 2 + px + q = kx + b должно иметь единственное решение, то есть его дискриминант равен нулю. В нашем случае имеем уравнение a x 2 = – x + 1 ( a 0). Дискриминант уравнения

Как подготовиться к решению задач с параметром на ЕГЭ | 1С:Репетитор

Советы ведущего преподавателя курса 1С:Репетитор
Татьяны Александровны Чернецкой

Задание № 18 варианта КИМ ЕГЭ по математике профильного уровня

Задача с параметром – для обычного школьника одна из самых сложных задач варианта КИМ ЕГЭ: в программах по математике для общеобразовательных школ (за исключением профильных и специализированных классов, школ и лицеев) таким задачам либо не уделяется должного внимания, либо они не рассматриваются вовсе. Несмотря на это, знание набора методов и подходов к решению таких задач и определенная практика их решения позволяют продвинуться в решении задачи с параметром достаточно далеко и если уж не решить ее полностью, то хотя бы получить за нее некоторое количество баллов на экзамене.

Ранее, до появления единого государственного экзамена, задачи с параметрами входили в варианты вступительных экзаменов по математике в ведущие вузы, а сегодня входят в вариант КИМ ЕГЭ профильного уровня. Дело в том, что эти задачи обладают высокой диагностической ценностью: они позволяют не только определить, насколько хорошо выпускник знает основные разделы школьного курса математики, но и проверить, насколько высок уровень его математического и логического мышления, насколько сильны первоначальные навыки математической исследовательской деятельности, а главное – насколько успешно он сможет овладеть курсом математики в вузе.

«Научите меня решать задачи с параметром», – такую просьбу я часто слышу от своих учеников. Что ж, эта задача потребует от выпускника немало интеллектуальных усилий. С чего начать изучение? С освоения методов решения задач с параметром. Собственно, если вы внимательно читали наши рекомендации, как подготовиться к решению сложных задач варианта КИМ ЕГЭ, то заметили, что это универсальный совет. Именно так построен наш курс «1С:Репетитор»: изучаем как можно более широкий спектр методов и приемов решения задач и тренируемся в применении этих методов на практике.

Чему нужно научиться, решая задачи с параметром

В первую очередь – правильно применять равносильные преобразования уравнений, неравенств и их систем. То есть понять, при каких ограничениях, накладываемых на параметр, можно выполнять то или иное преобразование. Лучше всего начать с заданий вида: «Для каждого значения параметра решить…» и рассмотреть по возможности все основные элементарные функции, встречающиеся в школьном курсе математики.

Если с несложными задачами такого вида школьник справляется неплохо, то можно переходить к изучению аналитических методов решения задач, содержательно усложняя и классифицируя задачи с точки зрения применения к ним этих методов исследования. Имеется в виду знакомство с подходами к решению задач, содержащих формулировки типа: «При каких значениях параметра уравнение (неравенство, система) имеет одно (два, три, бесконечно много и т.д.) решений», «При каких значениях параметра решением уравнения (неравенства, системы) является некоторое подмножество множества действительных чисел» и т.д.

Читать еще:  Создаём уют на даче основные моменты

Следующий шаг, который мы рекомендуем, – тщательно изучить схему исследования квадратичной функции. Поскольку квадратичная функция является одной из самых хорошо изученных в школьном курсе математики, на ее основе можно предложить большое количество исследовательских задач, разнообразных по форме и содержанию, чем и пользуются составители вариантов КИМ ЕГЭ.

Мы рекомендуем подойти к рассмотрению данных задач по следующей схеме:

  • задачи, основанные на свойствах дискриминанта и старшего коэффициента квадратного трехчлена;
  • применение теоремы Виета в задачах с параметром;
  • расположение корней квадратного трехчлена относительно заданных точек;
  • более сложные задачи, сводящиеся к исследованию квадратного трехчлена.

    Следующая тема курса – графические методы решения задач с параметром

    Существует два принципиально различных подхода – построение графиков функций или уравнений в плоскости (x; y) или в плоскости (x; a) . Кроме того, для графического метода решения задач с параметром в плоскости (x; y) необходимо рассмотреть различные виды преобразования графиков – обычно это параллельный перенос, поворот прямой и гомотетия. Есть класс задач, решение которых основано на аналитических свойствах функций (области определения, области значений, четности, периодичности и т.д.), эти свойства и приемы их использования тоже нужно знать.

    На этом перечень методов решения задач с параметрами, разумеется, не заканчивается, но анализ вариантов КИМ ЕГЭ профильного уровня и практика показывают, что в настоящее время этого достаточно для успешного решения задачи № 18 на экзамене.

    В заключение отметим, что выстроить подобный курс самостоятельно, без преподавателя, обычный школьник не сможет, даже имея под рукой хорошие учебные пособия по методам решения задач с параметром. Здесь необходима помощь опытного наставника, который сможет подобрать нужные задачи и выстроить траекторию движения школьника по ним.

    Заметим, кстати, что весьма эффективным инструментом для изучения именно методов решения задач с параметром являются интерактивные тренажеры с пошаговым разбором решения.

    Работая с таким тренажером, школьник одновременно учится выстраивать логику решения задачи с параметром и контролирует правильность выполнения каждого шага решения. Это очень важное умение, так как одна из основных сложностей в решении задачи с параметром состоит в том, что необходимо на каждом шаге решения понимать, что означают уже полученные результаты и что (в зависимости от этих результатов) еще остается сделать, чтобы довести решение до конца.

    Регулярно тренируйтесь в решении задач

    Чтобы начать заниматься на портале «1С:Репетитор», достаточно Зарегистрироваться.
    Вы можете:

    • Начать заниматься бесплатно.
    • Купить доступ к этой задаче в составе экспресс-курса «Алгебра» и научиться решать задачи №13, №15, №17, №18 и №19 на максимальный балл.

    Все курсы состоят из методически правильной последовательности теории и практики, необходимой для успешного решения задач. Включают теорию в форме текстов, слайдов и видео, задачи с решениями, интерактивные тренажеры, модели, и тесты.

    Остались вопросы? Позвоните нам по телефону 8 800 551-50-78 или напишите в онлайн-чат.

    Что такое параметр? Простые задачи с параметрами

    Одна из сложных задач Профильного ЕГЭ по математике — задача с параметрами. В ЕГЭ 2020 года это №18. И даже в вариантах ОГЭ они есть. Что же означает это слово — параметр?

    Толковый словарь (в который полезно время от времени заглядывать) дает ответ: «Параметр — это величина, характеризующая какое-нибудь основное свойство устройства, системы, явления или процесса».

    Хорошо, параметр — это какая-либо характеристика, свойство системы или процесса.

    Вот, например, ракета выводит космический аппарат в околоземное пространство. Как вы думаете — какие параметры влияют на его полет?

    Если корабль запустить с первой космической скоростью, приближенно равной 7,9 км/с, он выйдет на круговую орбиту.

    Вторая космическая скорость, приближенно равная 11,2 км/с, позволяет космическому кораблю преодолеть поле тяжести Земли. Третья космическая скорость, приближенно равная 16,7 км/с, дает возможность преодолеть гравитационное притяжение Земли и Солнца и покинуть пределы Солнечной системы.

    А если скорость меньше первой космической? Значит, тонны металла, топлива и дорогостоящей аппаратуры рухнут на землю, сопровождаемые репликой растерянного комментатора: «Кажется, что-то пошло не так».

    Скорость космического корабля можно — параметр, от которого зависит его дальнейшая траектория и судьба. Конечно, это не единственный параметр. В реальных задачах науки и техники, задействованы уравнения, включающие функции многих переменных и параметров, а также производные этих функций.

    1. Теперь пример из школьной математики.

    Все мы помним, что такое квадратное уравнение. Это уравнение вида , где коэффициент а не равен нулю.

    Количество корней квадратного уравнения зависит от знака выражения, которое называется дискриминант.

    Дискриминант квадратного уравнения:

    Если , квадратное уравнение имеет два корня: и

    Если , квадратное уравнение имеет единственный корень

    Если , квадратное уравнение не имеет действительных корней. Рассмотрим уравнение . Его дискриминант равен Если , то есть , это квадратное уравнение имеет два корня.

    Если при , уравнение имеет единственный корень.

    Если , то есть с > 1, корней нет.

    В нашем уравнении с — параметр, величина, которая принимать любые значения. Но от этого параметра с зависит количество корней данного уравнения.

    Для того чтобы уверенно решать задачи с параметрами, необходимо отличное знание и алгебры, и планиметрии.

    И еще две простые задачи с параметром.

    2. Найдите значение параметра p, при котором уравнение имеет 2 различных корня.

    Квадратное уравнение имеет два различных корня, когда .

    Найдем дискриминант уравнения

    Т.к. , получим:

    Вспомним, как решаются квадратичные неравенства (вы проходили это в 9 классе).

    Найдем корни квадратного уравнения . Это и

    Разложим левую часть неравенства на множители:

    Рисуем параболу с ветвями вверх. Она пересекает ось р в точках и

    3. При каких значениях параметра k система уравнений не имеет решений?

    Оба уравнения системы — линейные. График линейного уравнения — прямая. Запишем уравнения системы в привычном для нас виде, выразив у через х:

    Первое уравнение задает прямую с угловым коэффициентом . Второе уравнение — прямую с угловым коэффициентом -2.

    Система уравнений не имеет решений, если эти прямые не пересекаются, то есть параллельны. Это значит, что и .

    Действительно, в этом случае первое уравнение задает прямую , а второе — параллельную ей прямую

  • Ссылка на основную публикацию
    Adblock
    detector