19 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проверка прочности бетона методом отрыва со скалыванием

Определение прочности бетона. метод отрыва. скалывание

Прочность есть, пожалуй, одним из основных параметров бетона, определяющий его эксплуатационные свойства. Исходя из этого при возведении серьёзных несущих конструкций, строители шепетильно следят за этим показателем. Наиболее распространенным методом контроля есть определение прочности бетона способом отрыва со скалыванием. Но, существует и масса других способов.

Исходя из этого в данной статье мы детально рассмотрим, как выяснить прочность бетона наиболее распространенными современными способами.

Виды способов проверки прочности

Наиболее точным методом контроля качества бетона есть опробование цементной конструкции, по окончании того, как материал наберет свою проектную прочность.

Что касается опробования раздельно выполненных контрольных образцов, то оно разрешает выяснить только уровень качества цементной смеси, но не прочности материала в конструкции. Связано это с невозможностью обеспечение однообразных условий комплекта прочности опытного образца (вибрирование, нагрев и пр.) и цементного изделия.

Все существующие способы контроля подразделяются на три группы:

  • Прямые неразрушающие;
  • Разрушающие;
  • Косвенные неразрушающие.

Часто применяют неразрушающие методы контроля, но, значительно чаще работу делают косвенными способами. К последней группе относится опробование контрольных образцов, и образцов отобранных из цементной конструкции.

Обратите внимание! По показателю прочности при сжатии определяют класс бетона. Для этого цементные кубики раздавливают при помощи гидравлического пресса, который выдает итог.

Нужно заявить, что разрушающие методы кроме этого обширно распространены в строительных работах, но используют их реже, поскольку они нарушают целостность конструкции. Помимо этого, цена таких опробований довольно высокая.

Исходя из этого на сегодня наиболее распространенными являются следующие способы определения прочности:

  • Метод упругого отскока;
  • Ультразвуковой способ;
  • Метод ударного импульса.

Нужно заявить, что различные методы проверки имеют различную погрешность:

Основные требования к проверке прочности

В соответствии с требованиям, изложенным в СП 13-102-2003, выборку бетона для изучения косвенным и прямым способами нужно делать более чем на 30 участках, но, этого не хватает для построения и применения градуировочной зависимости.

Еще нужно, дабы зависимость, полученная парным корреляционно-регрессивным изучением, имела коэффициент корреляции не меньше 0,7, и среднеквадратическое отклонение составляло менее 15 процентов средней прочности. Для исполнения этих условий, точность измерений должна быть высокой, наряду с этим прочность бетона обязана изменяться в широком диапазоне.

Нужно заявить, что при изучении конструкций, эти условия соблюдаются достаточно редко. Дело в том, что базовый способ опробований сопровождается большой погрешностью.

Помимо этого, прочность бетона на поверхности может различаться от прочности на некоторой глубине. Но, в случае если бетонирование выполнено как следует и бетон соответствует своему проектному классу, то параметры однотипных конструкций не изменяются в широком диапазоне.

Дабы выяснить прочность без нарушения действующих норм, направляться воспользоваться прямыми неразрушающими либо разрушающими методами.

По ГОСТ 22690-88 к прямым методам относятся:

  • Способ отрыва;
  • Отрыв бетона со скалыванием;
  • Скалывание ребра.

Сейчас подробней рассмотрим наиболее распространенные технологии определения качества бетона.

Технология определения прочности

Метод отрыва

Принцип данного способа базируется на измерении усилия, которое необходимо приложить для отрыва участка цементной конструкции. Отрывающую нагрузку используют к ровной поверхности цементной конструкции. Для этого к ней приклеивается стальной диск, который при помощи тяги соединяется с измерительным прибором.

Диск приклеивают при помощи клея на эпоксидной смоле. ГОСТ 22690-88 рекомендует применять клей ЭД20 с цементным наполнителем. Действительно, в наше время существуют качественные двухкомпонентные клеи.

Данная технология подразумевает приклеивание диска без дополнительных мер по ограничению участка отрыва. Что касается площади отрыва, то она непостоянная и определяется по окончании каждого опробования.

Действительно, в зарубежной практике участок отрыва предварительно ограничивается бороздой, делаемой кольцевыми сверлами. В этом случае площадь отрыва постоянная и узнаваемая.

По окончании определения нужного для отрыва усилия, получают устойчивость материала к растяжению.

По нему, при помощи эмпирической зависимости вычисляют прочность на сжатие при помощи таковой формулы – Rbt = 0,5?(R^2 ), где:

  • Rbt – прочность на растяжение.
  • R – прочность на сжатие.

Для изучения бетона способом отрыва используются те же устройства, что и для способа отрыва со скалыванием, это:

Обратите внимание! Дабы выполнить опробование, кроме этого пригодится захватное устройство, в частности – диск с закрепленной на нем тягой.

Отрыв со скалыванием

Данный метод имеет большое количество неспециализированного с вышеописанным способом. Главное его отличие содержится в методе монтажа устройства к цементной конструкции. Дабы приложить к ней отрывающее усилие используют лепестковые анкеры, каковые смогут быть различных размеров.

Анкеры вставляются в отверстия, пробуренные в области измерения. Как и в прошлом случае, прибор измеряет разрушающее усилие.

Вычисление прочности на сжатие осуществляется при помощи зависимости, выраженной формулой — R=m1*m2*P, где:

  • m1 обозначает коэффициент большого размера большого наполнителя;
  • m2 обозначает коэффициент перехода к прочности на сжатие. Он зависит от условий вида бетона, и условий комплекта прочности.
  • P – разрушающее усилие, полученное в следствии изучений.

У нас данный способ есть одним из наиболее популярных, поскольку он достаточно универсальный. Он предоставляет возможность выполнить опробование на любом участке конструкции, поскольку не требует наличия ровной поверхности. Помимо этого, закрепить лепестковый анкер своими руками в толще бетона очень просто.

Действительно, имеются и кое-какие ограничения, каковые заключаются в следующих моментах:

  • Густое армирование конструкции – в этом случае измерения будут недостоверными.
  • Толщина конструкции – она должна быть вдвое больше длины анкера.

Скалывание ребра

Данная технология есть последним прямым способом неразрушающей проверки контроля. Основной ее изюминкой есть определение усилия, которое прикладывается для скалывания участка бетона, расположенного на ребре конструкции.

Конструкция прибора, который возможно установить на цементное изделие с одним внешним углом, была создана недавно. Монтаж устройства к одной из сторон осуществляется при помощи анкера с дюбелем.

По окончании получения данных с прибора, определяют прочность на сжатие по следующей нормированной зависимости, выраженной формулой — R=0,058*m*(30P+P2), где:

  • m – коэффициент, учитывает крупность заполнителя.
  • P — усилие, приложенное для скалывания бетона.

Ультразвуковое определение

Ультразвуковой способ определения прочности бетона основан на взаимосвязи между скоростью распространения и прочностью материала в нем ультразвуковых волн.

Причем существует две градуировочные зависимости:

  • Времени распространения волн ультразвука и прочности материала.
  • Скорости распространения волн ультразвука и прочности материала.

Любой метод рекомендован для определенного типа конструкций:

  • Сквозное прозвучивание в поперечном направлении – используют для линейных сборных конструкций. При таких изучениях устройства устанавливают с двух сторон испытываемой конструкции.
  • Поверхностное прозвучивание – используют для изучения ребристых, плоских, многопустотных плиты перекрытия и стеновых панелей. В этом случае устройство устанавливается лишь с одной стороны конструкции.

Для обеспечения качественного акустического контакта между испытываемой конструкцией и ультразвуковым преобразователем, используют вязкие материалы, к примеру, солидол. Кроме этого распространен «сухой контакт», но в этом случае применяют конусные насадки и протекторы.

Устройства для ультразвукового изучения складываются из двух основных элементов:

Датчики смогут быть:

  • Раздельными – для сквозного прозвучивания.
  • Объединенными – предназначенные для поверхностного прозвучивания.

К преимуществам данного метода проверки относится простота и универсальность.

Изучение молотком Кашкарова

Процесс опробование бетона молотком Кашкарова регламентирован ГОСТом 22690.2-77. Данный метод применяют для определения прочности материала в диапазоне 5-50 МПа.

Инструкция по изучению бетона данным способом выглядит следующим образом:

  • Сначала подыскивается ровный участок конструкции.
  • В случае если на его поверхности имеется шероховатость либо краска, то нужно выполнить зачистку участка железной щеткой.
  • После этого на поверхность бетона направляться положить копировальную бумагу и сверху лист простой белой бумаги.

  • Потом по цементной поверхности наносится удар молотком Кашкарова средней силы перпендикулярно к плоскости бетона. В следствии удара остается два отпечатка – на эталонном стержне и листе бумаги.
  • Затем железный стержень сдвигается не меньше чем на 10 мм и наносится еще удар. Для большей точности изучения, процедуру необходимо повторить пара раз.
  • После этого направляться измерить отпечатки на эталонном стержне и бумаге с точностью до 0,1 мм.
  • Измерив отпечатки, направляться сложить раздельно диаметры, полученные на бумаге, и диаметры на эталонном стержне.

Косвенным параметром прочности бетона есть средняя величина отношения отпечатков на эталонном стержне и на бетоне.

Способ отскока

Данный метод изучения есть наиболее несложным. Опробование выполняется при помощи особого электронного прибора. В нем имеется молоток, вдавливающий шарик в бетон. Электроника определяет прочность материала по отскоку шарика по окончании вдавливания.

Для опробования бетона нужно упереть устройство в цементную поверхность и надавить соответствующую кнопку. Результаты высвечиваются на экране прибора. Нужно заявить, что фактически так же происходит процесс опробования материала при помощи устройства ударно-импульсного типа.

Вот и все основные методы определения качества бетона, каковые значительно чаще используются в современном постройке.

Вывод

Как мы узнали, существует много способов определения прочности бетона. Причем, назвать какой-то из них лучшим нереально, поскольку различные методы, в большинстве случаев, предназначены для различных типов цементных конструкций, и имеют различные погрешности.

Из видео в данной статье возможно взять дополнительную данные по данной теме.

Технологии и приборы для неразрушающего исследования бетона

Определение показателя прочности на усилие сжатия производится путем расчета по формулам и графикам, указанным в ГОСТ 22690-88, а также с использованием графиков прилагаемых производителями приборов. И в ГОСТе, и в графиках производителя указываются градуировочные зависимости между самим параметром прочности и его косвенным значением.

Получение показаний приборами производится при исследовании самой строительной конструкции. Кроме этого, могут проводиться и испытания полученных из конструкции проб. Это необходимо для получения показаний прочности на сложно доступных участках, а также при отрицательных температурах наружной среды. Полученные пробы заливаются бетонным раствором прочностью не менее 50% от прочности пробы. Для этого удобно использовать типовые формы согласно ГОСТ 10180-2012. Порядок размещения проб после заливки указан на рис.1.

Читать еще:  Дом из ледяных блоков

Рис.1. 1 — проба бетона; 2 — наиболее удобная для испытания сторона пробы; 3 — раствор, в котором закреплена проба

Как уже говорилось выше, приборы для проведения неразрушающего контроля имеют собственные графики градуировочной зависимости или базовые настройки для исследований тяжелого бетона средних марок.

Для получения показаний прочности конструкций возможно использование технологий упругого отскока, ударного импульса или пластической деформации. Получение точного значения производится с помощью градуировочной зависимости определенной для бетона, разнящегося с испытываемым своим составом, условиями застывания, возрастом или влажностью. Уточнение значений производится по методике указанной в пр. 9. ГОСТ 22690-88.

Для определения показателей прочности ультразвуковым способом необходима градуировка и корректировка данных полученных прибором согласно ГОСТ 17624 и ГОСТ 24332. В таблице 1 приведены данные расстояний между точками испытаний и количество испытаний для различных методик неразрушающего контроля.

Таблица 1

Наименование метода

Число испытаний на участке

Расстояние между местами испытаний, мм

Расстояние от края конструкции до места испытаний, мм

Толщина конструкции

2 диаметра диска

Отрыв со скалыванием

5 глубин вырыва

Удвоенная глубина установки анкера

Испытание методом упругого отскока

Методика определения прочности конструкции требует расстояния между точками приложения усилий и арматурой не менее 50 мм. Процесс испытания состоит из следующих этапов:

  • Размещение прибора на поверхности конструкции таким образом, чтобы направление усилия шло под углом 90°.
  • Относительно горизонтали прибор располагается таким же образом, как и при испытании образцов для определения градуировки. Если выбирается иная точка установки, то необходимо внесение поправок в соответствии с рекомендациями производителя прибора.
  • Определяется косвенная характеристика.
  • Производится расчет косвенной характеристики на участке конструкции.

Определение прочности на усилие сжатия прибором «Склерометр — Schmidt тип N»

Склерометр – это прибор для замера показаний прочности бетона и бетонного раствора с посредством методики упругого отскока в соответствии с требованиями ГОСТ 22690-88. Границы замеров для данной методики составляют от 5 до 50 МПа (для марок М50 — М500).

Прибор состоит из ударного механизма и стрелки-индикатора, помещенных в корпус цилиндрической формы. Замер проводится приведением в действие ударного механизма. Величина отскока бойка прибора фиксируется стрелкой. Полученный показатель твердости при ударе переводится в показатель прочности с помощью графика, прилагаемого к склерометру. График составлен на основании сопоставления показаний разрушающих измерений на пробах кубической формы путем раздавливания в прессе и испытаний склерометром.

Отрыв со скалыванием

Для проведений испытаний по методике отрыва со скалыванием точки закладки анкеров должны располагаться в зонах минимального напряжения от действующих на конструкцию нагрузок или минимального усилия обжатия предварительно напряженной арматуры.

Процесс замера состоит из следующих этапов:

  • Если лепестковый анкер не был заложен до бетонирования, то проводится бурение отверстия или пробивка шпура размером и глубиной соответствующим требованиям используемого прибора.
  • Анкерное устройство крепится в отверстии или шпуре.
  • Производится соединение прибора и заложенного анкера.
  • Приводится в действие прибор, начиная с минимальной нагрузки на отрыв с последующим увеличением со скоростью от 1,5 до 3 кН/с.
  • После отрыва фиксируются показатели приложенного усилия и минимальная с максимальной глубины скалывания. Точность замера глубин должна составлять не менее 1 мм.

Таким способом определяется точный показатель прочности бетона за исключением случаев:

  • если разница максимальной и минимальной величин скалывания между границами разрушения и поверхностью разнятся более чем в 2 раза;
  • разница между глубинами вырыва и заделки отличается более чем на 5%.

При указанных выше факторах применение итогов допускается только для примерной оценки.

Рекомендуется применение анкерных устройств в соответствии с приложением 2. ГОСТ 22690-88 для которых определена следующая градуировочная зависимость (пр. 5.).

ПРИЛОЖЕНИЕ

В случае применения согласно ГОСТ 22690-88 анкерных устройств, показатель прочности бетона R, МПа определяется по формуле перевода разрушающего усилия (Р) полученного в ходе испытаний к прочности на сжатие:

m1 – коэффициент учета предельного размера большого заполнителя. Принимается равным 1 при крупности до 50 мм, 1.1 – при крупности от 50 мм.;

m2 – коэффициент перевода к прочности на сжатие, находится в зависимости от марки бетона и обстоятельств его затвердевания.

При замерах тяжелого бетона прочностью от 10 МПа и керамзитового бетона прочностью от 5 — 40 МПа показатель m2 принимается равным в соответствии с таблицей 2

Таблица 2

Условие твердения бетона

Тип анкерного устройства

Предполагаемая прочность бетона, МПа

Глубина заделки анкерного устройства, мм

Значение коэффициента m2 для бетона

тяжелого

легкого

Прибор для замера показателя прочности бетона методом отрыва со скалыванием «Оникс-ОС»

Для проведения замеров необходим участок ровной поверхности размером 200х200 мм. В центре участка пробивается или пробуривается (шлямбургом или электромеханическим инструментом) отверстие глубиной 55×10-3 м строго перпендикулярно поверхности конструкции с отклонением не более 1 градуса.

Процесс измерения состоит из следующих этапов:

  • В отверстие соответствующее вышеуказанным параметрам закладывается анкер, состоящий из конуса и трех сегментов.
  • Закручивается гайка-тяга с усилием необходимым для предотвращения проскальзывания анкера.
  • Опора устройства до упора закручивается в рабочий цилиндр.
  • Винт насоса устанавливается в верхнее положение.
  • Устройство подсоединяется к гайке-тяге.
  • Опора вкручивается до плотного соприкосновения с поверхностью конструкции.
  • Анкерное устройство вырывается путем вращения ручки насоса.
  • Определяется разрушающее усилие визуальным методом по показаниям давления на манометре. Точность должна составлять до 2,5 кгс/см2.

Очень важно чтобы при проведении испытаний не производилось проскальзывание анкерной конструкции. Итоги замера не учитываются при проскальзывании более 5х10-3 м. Не допустимо повторное использование отверстия т. к. это может привести к некорректным результатам.

Определение глубины скалывания определяется с помощью двух линеек. Первая располагается ребром на испытуемой поверхности, второй определяется глубина.

Ультразвуковой метод определения прочности бетона

Определение прочностных показателей бетона ультразвуковым методом производится на основании существующих зависимостей между скоростью распространения звуковых волн и прочность материала. Для этого используются специальные градуировочные зависимости между скоростью ультразвука и прочностью или между временем распространения и прочностью. Выбор зависимости основан на технологии ультразвукового сканирования.

Для ультразвукового исследования используются методики сквозного или поверхностного прозвучивания. Для сборных строительных конструкций, таких как колоны, ригели, балки и т. д. применяется сквозная методика ультразвукового сканирования с направлением волн в поперечном направлении. При наличии затруднений со сквозным сканированием в силу конструктивных особенностей, а также для стеновых панелей, ребристых плоских панелей и др. плоских стройконструкций применяется поверхностное сканирование. База прозвучивания устанавливается как и на пробах при установке градуировочной зависимости.

Между поверхностями прибора и стройконструкций обеспечивается плотный акустический контакт с помощью технического вазелина и др. вязких материалов. От выбора методики прозвучивания зависит определение градуировочной зависимости. При сквозном определяется зависимость прочности от скорости прохождения звуковой волны, при поверхностном – зависимость прочности от времени её прохождения. При поверхностном сканировании возможно использование соотношения «скорость-прочность» с применением коэффициента перехода (пр. 3.).

Время прохождения звуковой волны через материал определяется при направлении под прямым углом к уплотнению при расстоянии от 30 и более мм от края исследуемой поверхности строительной конструкции. Также обязательным является направление волны под прямым углом к заложенной в конструкции арматуре при её концентрации в зоне исследований не более 5% от объёма железобетона. Возможно направление волны параллельно арматуре при расстоянии от арматуры не меньше чем 60% от длины базы.

Пульсар 1.2

Рис. 2. Внешний вид прибора Пульсар-1.2: 1 — вход приемника; 2 — выход излучателя

В состав прибора Пульсар (рис. 2.) входит электронный блок и ультразвуковые преобразователи. Последние могут быть раздельными или объединенными в единый блок. Электронный блок оснащен клавиатурой и дисплеем, имеются разъёмы для подключения блока поверхностного сканирования или отдельных ультразвуковых преобразователей для сквозного сканирования. Прибор также оснащен USB-разъёмом для подключения к информационно-вычислительным системам. Доступ к автономным источникам питания производится через крышку в нижней части.

Функции прибора основана на замере времени преодоления ультразвукового импульса через исследуемый материал от излучателя к приемнику. Скорость (V) прохождения волны определяется по формуле:

N – расстояние от излучателя до приемника;

t – время прохождения волны.

Максимально точный показатель определяется как результат обработки данных после шести измерений. Проводится от 1 до 10 измерений с определением среднего значения, а также с учетом двух коэффициентов – вариации и неоднородности.

Скорость прохождения ультразвуковой волны через исследуемый бетон зависит от показателей:

  • плотность и упругость;
  • присутствие либо отсутствие дефектов (трещин и пустот), от которых зависят прочностные свойства и качество материала.

Исходя из этого, сканируя ультразвуком элементы стройконструкций возможно получение информации о:

  • прочностных показателях;
  • монолитности структуры;
  • параметрах модулей плотности и упругости;
  • наличии/отсутствии изъянов, а также об их местонахождении и конфигурации;
  • форме А-сигнала.

Возможно проведение исследований с применением смазки и посредством сухого контакта см. рис. 3.

Рис. 3. Варианты прозвучивания

Прибор «Пульсар» производит фиксацию и визуализацию ультразвуковых импульсов, оснащен цифровыми и аналоговыми фильтрами для отсеивания помех. При работе в режиме осциллографа есть возможность визуального наблюдения за сигналами на дисплее, оператор может самостоятельно устанавливать курсор в положение контрольной метки первого вступления, изменять увеличение измерительного тракта, сдвигать ось времени для изучения импульсов первого вступления и огибающей.

Читать еще:  Строим частный дом Лучшие статьи по строительству

Оформление полученных данных прочности конструкций методами неразрушающего контроля

Итоги проведенных испытаний заносятся в журнал в котором указываются:

  • название стройконструкции, номер исследуемой партии;
  • вид исследуемой прочности и ее необходимый параметр;
  • параметры бетона;
  • наименование применяемой методики исследований, модель используемого прибора и его заводской номер;
  • средний косвенный показатель прочности и должное значение прочности материала;
  • данные об применении корректирующих коэффициентов;
  • итоговые показатели прочности;
  • данные о лицах проводившие испытания и их подпись, дата проведения испытаний.

Для определения прочности ультразвуковым методом необходимо использовать форму, указанную в пр. №8-9, ГОСТ 17624-87 «БЕТОНЫ. УЛЬТРАЗВУКОВОЙ МЕТОД ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ»

Ударно-импульсный метод определения прочности бетона

Установление марки бетона посредством технологии ударно-импульсного исследования производится прибором ИПС-МГ4.01 в соответствии с требованиями ГОСТ 22690-88.

Технические характеристики прибора ИПС-МГ4.01:

Проверка прочности бетона методом отрыва со скалыванием. Контроль прочности бетона методом отрыва со скалыванием Термины и определения

А. В. Улыбин, к. т. н.; С. Д. Федотов, Д. С. Тарасова (ПНИПКУ «Венчур», Санкт-Петербург)

В предлагаемой статье рассмотрены основные методы неразрушающего контроля прочности бетона, применяемые при обследовании конструкций зданий и сооружений. Приведены результаты экспериментов по сопоставлению данных, получаемых неразрушающими методами контроля и испытанием образцов. Показывается преимущество метода отрыва со скалыванием перед другими методами контроля прочности. Описываются мероприятия, без выполнения которых применение косвенных неразрушающих методов контроля недопустимо.

Прочность бетона на сжатие является одним из наиболее часто контролируемых параметров при строительстве и обследовании железобетонных конструкций. Имеется большое число методов контроля, применяемых на практике. Более достоверным, сточки зрения авторов, является определение прочности не по контрольным образцам (ГОСТ 10180-90), изготовляемым из бетонной смеси, а по испытанию бетона конструкции после набора им проектной прочности. Метод испытания контрольных образцов позволяет оценить качество бетонной смеси, но не прочность бетона конструкции. Это вызвано тем, что невозможно обеспечить идентичные условия набора прочности (вибрирование, прогрев и др.) для бетона в конструкции и бетонных кубиков образцов.

Методы контроля по классификации ГОСТ 18105-2010 («Бетоны. Правила контроля и оценки прочности») разделены на три группы:

  • Разрушающие;
  • Прямые неразрушающие;
  • Косвенные неразрушающие.

Таблица 1. Характеристики методов неразрушающего контроля прочности бетона.

*По требованиям ГОСТ 17624-87 и ГОСТ 22690-88;

**По данным источника без построения частной градуировочной зависимости

К методам первой группы относится упомянутый метод контрольных образцов, а также метод определения прочности путем испытания образцов, отобранных из конструкций. Последний является базовым и считается наиболее точным и достоверным. Однако при обследовании к нему при бегают довольно редко. Основными причинами этого являются существенное нарушение целостности конструкций и высокая стоимость исследований.

В основном применяются методы определения прочности бетона неразрушающим контролем. При этом большая часть работ выполняется косвенными методами. Среди них наиболее распространенными на сегодняшний день являются ультразвуковой метод по ГОСТ 17624-87, методы ударного импульса и упругого отскока по ГОСТ 22690-88. Однако при использовании указанных методов редко соблюдаются требования стандартов по построению частных градуировочных зависимостей. Некоторые исполнители не знают этих требований.

Другие знают, но не понимают, насколько велика ошибка результатов измерений при использовании зависимостей, заложенных или прилагаемых к прибору, вместо зависимости, построенной на конкретном исследуемом бетоне. Есть «специалисты», которые знают об указанных требованиях норм, но пренебрегают ими, ориентируясь на финансовую выгоду и неосведомленность заказчика в данном вопросе.

Про факторы, влияющие на ошибку измерения прочности без построения частных градуировочных зависимостей, написано много работ. В табл.1 представлены данные по максимальной погрешности измерений различными методами, приведенные в монографии по неразрушающему контролю бетона.

В дополнение к обозначенной проблеме использования несоответствующих («ложных») зависимостей обозначим еще одну, возникающую при обследовании. Согласно требованиям СП 13-102-2003 обеспечение выборки измерений (параллельных испытаний бетона косвенным и прямым методом) на более чем 30 участках является необходимым, но не достаточным для построения и использования градуировочной зависимости. Необходимо, чтобы полученная парным корреляционно- регрессионным анализом зависимость имела высокий коэффициент корреляции (более 0,7) и низкое СКО (менее 15% от средней прочности). Чтобы данное условие выполнялось, точность измерений обоих контролируемых параметров (например, скорость ультразвуковых волн и прочность бетона) должна быть достаточно высокой, а прочность бетона, по которому строится зависимость, должна изменяться в широком диапазоне.

При обследовании конструкций указанные условия выполняются редко. Во-первых, даже базовый метод испытания образцов нередко сопровождается высокой погрешностью. Во-вторых, за счет неоднородности бетона и других факторов прочность в поверхностном слое (исследуемая косвенным методом) может не соответствовать прочности того же участка на некоторой глубине (при использовании прямых методов). И наконец, при нормальном качестве бетонирования и соответствии класса бетона проектному в пределах одного объекта редко можно встретить однотипные конструкции с прочностью, изменяющейся в широком диапазоне (например, от В20 до В60). Таким образом, зависимость приходится строить по выборке измерений с малым изменением исследуемого параметра.

В качестве наглядного примера вышеуказанной проблемы рассмотрим градуировочную зависимость, представленную на рис. 1. Линейная регрессионная зависимость построена по результатам ультразвуковых измерений и испытаний на прессе образцов бетона. Несмотря на большой разброс результатов измерений, зависимость имеет коэффициент корреляции 0,72, что до-пустимо по требованиям СП 13-102-2003 . При аппроксимации функциями, отличными от линейной (степенной, логарифмической и пр.) коэффициент корреляции был менее указанного. Если бы диапазон исследуемой прочности бетона был меньше, например от 30 до 40 МПа (область, выделенная красным цветом), то совокупность результатов измерений превратилась бы в «облако», представленное в правой части рис. 1. Данное облако точек характеризуется отсутствием связи между измеряемым и искомым параметрами, что подтверждается максимальным коэффициентом корреляции 0,36. Иными словами, градуировочную зависимость здесь не построить.

РИС. 1. Зависимость между прочностью бетона и скоростью ультразвуковых волн

Также необходимо отметить, что на рядовых объектах количество участков измерения прочности для построения градуировочной зависимости сопоставимо с общим количеством измеряемых участков. В данном случае прочность бетона может быть определена по результатам только прямых измерений, а в градуировочной зависимости и использовании косвенных методов контроля уже не будет смысла.

Таким образом, без нарушения требований действующих норм для определения прочности бетона при обследовании в любом случае необходимо в том или ином объеме использовать прямые неразрушающие либо разрушающие методы контроля. Учитывая это, а также обозначенные выше проблемы, далее более подробно рас- смотрим прямые методы контроля.

К данной группе по ГОСТ 22690-88 относится три метода:

Метод отрыва

Метод отрыва основан на измерении максимального усилия, необходимого для отрыва фрагмента бетонной конструкции. Отрывающая нагрузка прилагается к ровной поверхности испытываемой конструкции за счет приклеивания стального диска (рис. 2), имеющего тягу для соединения с прибором. Для приклеивания могут использоваться различные клеи на эпоксидной основе. В ГОСТ 22690-88 рекомендуются клеи ЭД20 и ЭД16 с цементным наполнителем.
На сегодняшний день могут применяться современные двухкомпонентные клеи, производство которых хорошо налажено (POXIPOL, «Контакт», «Момент» И др.). В отечественной литературе по испытанию бетона методика испытания предполагает приклеивание диска к участку испытания без дополнительных мероприятий по ограничению зоны отрыва. В таких условиях площадь отрыва является непостоянной и должна определяться после каждого испытания. В зарубежной практике перед испытанием участок отрыва ограничивается бороздой, создаваемой кольцевыми сверлами (коронками). В данном случае площадь отрыва постоянна и известна, что увеличивает точность измерений.

После отрыва фрагмента и определения усилия определяется прочность бетона на растяжение (R(bt)) , по которой с помощью пересчета по эмпирической зависимости может быть определена прочность на сжатие (R). Для перевода можно воспользоваться выражением, указанным в пособии:

Для метода отрыва могут применяться различные приборы, используемые и для метода отрыва со скалыванием, такие как , ОНИКС-ОС, ПИБ, DYNA (рис. 2), а также старые аналоги: ГПНВ-5 , ГПНС-5 . Для проведения испытания необходимо наличие захватного устройства, соответствующего тяге, расположенной на диске.

Рис. 2. Прибор для метода отрыва с диском для приклеивания к бетону

В России метод отрыва не нашел широкого распространения. Об этом свидетельствует и отсутствие серийно выпускаемых приборов, приспособленных для крепления к дискам, а также самих дисков. В нормативных документах отсутствует зависимость для перехода от усилия вырыва к прочности на сжатие. В новом ГОСТ 18105-2010 , а также предшествующем ГОСТ Р 53231-2008 метод отрыва не включен в перечень прямых методов неразрушающего контроля и вообще не упоминается. Причиной этому, по всей видимости, является ограниченный температурный диапазон применения метода, что связано с продолжительностью твердения и (или) невозможностью использования эпоксидных клеев при низкой температуре воздуха. Большая часть России расположена в более холодных климатических зонах, чем страны Европы, поэтому данный метод, широко при меняемый в европейских странах, в нашей стране не используется. Другим отрицательным фактором является необходимость сверления борозды, что дополнительно снижает производительность контроля.

Рис. 3. Испытание бетона методом отрыва со скалыванием

Данный метод имеет много общего с описанным выше методом отрыва. Основным отличием является способ крепления к бетону. Для приложения отрывающего усилия используются лепестковые анкеры различных размеров. При обследовании конструкций анкеры закладываются в шпур, пробуренный на участке измерения. Так же, как и при методе отрыва, измеряется разрушающее усилие (Р). Переход к прочности бетона на сжатие осуществляется по указанной в ГОСТ 22690 зависимости: R=m 1 .m 2 .P , где m 1 — коэффициент, учитывающий максимальный размер крупного заполнителя, m 2 — коэффициент перехода к прочности на сжатие, зависящий от вида бетона и условий твердения.

Читать еще:  Кирпичные печи для дома чертежи с порядовками

В нашей стране данный метод нашел, пожалуй, самое широкое распространение благодаря своей универсальности (табл.1), относительной простоте крепления к бетону, возможности испытания практически налюбом участке конструкции. Основными ограничениями для его применения являются густое армирование бетона и толщина испытываемой конструкции, которая должна быть больше, чем удвоенная длина анкера. Для выполнения испытаний могут использоваться приборы, указанные выше.

Таблица 2. Сравнительные характеристики прямых методов неразрушающего контроля

как обработать результаты испытаний бетона неразрушающим методом?

Обследование зданий и сооружений

На данный момент есть два варианта (ИМХО):
1) Вы проводите испытания неразрушающим методом и методом отрыва со скалывания и строите свою зависимость одного от другого. Это самый точный вариант, но не всегда осуществимый так как сложно выполнить достаточное количество отрывов.

2)Вы проводите испытания неразрушающим методом и применяете универсальную зависимость (либо зависимость с другого объекта или от производителя), так же проводите не менее 3-х испытаний отрыва для определения Кс по прил.9 ГОСТ 22690.

А дальше темный лес — идет статистическая обработка прочности бетона и тут мнения сильно расходятся есть методика по СП 13-102-2003 и по ГОСТ 18105, они в принципе схожи, но есть пара нюансов от которых кипит мозг.

Уважаемы форумчане предлагаю закрепить эту тему в топике и все обсуждения вопросов испытания прочности бетона неразрушающими методами обсуждать здесь. Что бы повысить качество работ и улучшить помощь инженерам.

Вопрос на самом деле достаточно интересный.

Вообще в чем суть зависимости? Как я понимаю, это определенная тенденция неких абстрактных показаний разных приборов от реального положения вещей. К примеру есть точные данные о прочности 10 образцов бетона (читай пресс) и данные о прочности этих же образцов, скажем, методом ударного импульса. Тогда все просто — строим зависимость импульса от пресса и далее конструкции проверяем импульсом и корректируем показания с помощью построенной зависимости. Опять же есть область определения функции для свежепостроенной зависимости, то есть не все значения импульса могут быть правильно скорректированы этой самой зависимостью, но это уже частности. В целом, вот этот случай — импульс от пресса — мне понятен.

Теперь другая ситуация. Есть только отрыв. Он считается за эталон прочности? Если да, то какая тут может требоваться градуировочная зависимость? А если нет, то как можно применять некую универсальную зависимость или проводить

Сообщение от SomeBody:
испытания неразрушающим методом и методом отрыва со скалывания и строите свою зависимость одного от другого.

, если оба метода по сути косвенные?

И еще вопрос: что брать за единичное значение с той и с другой стороны, когда строится зависимость? Какие значения сравнивать от разных приборов?
Допустим, есть некая конструкция. Есть приборы на ультразвук и отрыв.
10 раз оторвал, 10 раз ультразвучишь и берешь среднее значение? Или 10 раз оторвал, 10 раз ультразвучишь, потом ко всему этому применил статистическую обработку и только потом сравнивать? Или может еще как-то?

Реально хочется разобраться, потому что складывается впечатление, что вопросов не вызывает только пресс, а в остальном чуть ли не у каждого своя методика.

Сообщение от Новенький:
Реально хочется разобраться, потому что складывается впечатление, что вопросов не вызывает только пресс, а в остальном чуть ли не у каждого своя методика.

Лишь поверенный пресс безупречен 🙂
Все остальные методики являются косвенными. начиная от стрельбы с нагана и заканчивая ультразвуком. все они требуют калибровки по каждому новому бетону, кстати с учетом его обжатия в конструкциях!
Так что пресс — идеал определения прочности.

Вот какая штука получается, для удобства описания разделю на пункты:

1) Когда при обследование все клёво и можно выбурить керны и их раздавить и по ГОСТу 10180 провести отбраковку результатов, получить среднее значение прочности испытанной конструкции (особо выделю, что одной конструкции). Допустим мы имеем несколько фундаментных опор одной прочности, по проекту прочность В20. То в прицепе испытав керны нам больше ничего и не нужно. Статистическую обработку допускается не проводить при прямых испытаниях.

2) Когда все не так радужно, возьмем те же фундаментные опоры (5 шт). Мы не можем провести выбуривания, или можем но только одной конструкции. Зная из проекта, что класс у всех одинаков (В20), Выбуриваем керны пихаем их под пресс и пока они зажаты в пресс проводим испытание кернов косвенным неразрушающим методом, для построения тарировочной (градуировочной) зависитмости по ГОСТ 22690. После чего мы оставшиеся фундаменты испытываем косвенным методом и при достаточном количестве испытаний проводим статистическую обработку по ГОСТ 18105

3) Когда все еще хуже, но не так уж и плохо, у нас есть проект есть 5 опор одинакового класса по проекту, но нет места для выбуривания. тогда мы проводим серию параллельный испытаний методом отрыва со скалывания и косвенным методом, и по ГОСТ 22690 или по СП 13-102-2003 строим зависимость. Отдельно отмечу что в наших нормах отрыв или скол ребра является прямым неразрушающим методом, его тарировка приведена в ГОСТ 22690 и состоит в основном из табличных коэффициентов зависящих от крупности заполнителя и типа анкера с учетом ТВО бетона. После получения зависимости применяем её для всех конструкций и проводим статистическую обработку при достаточном кол-во испытаний.

4) И наконец таки мы добрались до реалий обследования, проекта нет, максимум 3-6 мест под отрыв, срок сдачи позавчера и т.д. Что мы можем в этом случае: попытаться построить зависимость как и в п.3 или имея ранее построенную зависимость в широком диапазоне прочности бетона (допустим у нас есть зависимость построена заводом изготовителем для бетонов от В 10 до В40) или ранее построенная зависимость для бетона примерной того же класса или отличного от него на 30%. Мы проводим косвенные испытания на конструкциях и в соответствии с прил. 9 ГОСТ 22690 по результатом отрывов находим коэффициент уточнения градуировочной зависимости Кс, после чего уточняем значения прочности по заводской или старой нашей зависимостью. И проводим статистическую обработку по результатам которой возможно разобьем наши фундаменты на несколько классов, что возможно приведет к дополнительным испытания.

для п.3 и 4 очень важно знать коэффициент корреляции зависимости и её ошибку иначе статистику не проведете ни по СП, ни по ГОСТ. Хотя есть один момент при применения универсальной зависимости можно по ГОСТ 18105 принять условный класс бетона по схеме Г = R*0,8 , но не менее минимальной прочности.

Сообщение от SomeBody:
Конечно опыт это основное, но молодым в плане опыта, нужно его нарабатывать брать гвоздик (ключи, отвертку, молоток и т.д.) и каждый испытываемый бетон царапать стучать, чтобы в последствии по прямым признакам (цвет, звук, вкус, глубина реза) определять прочность участка и при испытаниях конструкции разбивать её на участки с разной прочностью *)

Насчёт вкуса — ты серьезно? Кто-то рассказывал подобное, думал байка.

Сообщение от ник25:
Насчёт вкуса — ты серьезно? Кто-то рассказывал подобное, думал байка.

Не пробуй каку! Это он шутит 🙂
Просто есть еще и такие моменты в изменении хим состава, как карбонизация бетона например. И это тоже влияет на прочность.

Сообщение от Krieger:
0,1% раствор фенолфталеина в этиловом спирте

собрался сделать раствор фенолфталеина,но концентрация даже на форуме рекомендуется разная —
http://forum.dwg.ru/showthread.php?p=949666 , пост №21 — 5% , пост №45 — 1%,

Сообщение от :
6.4.6. В целях оценки сохранности арматурной стали в местах отслоения и измененных цветов бетона следует определять глубину карбонизации бетона на свежем сколе после нанесения 1%-го раствора фенолфталеина в этиловом спирте.

Сообщение от :
ИНСТРУКЦИЯ ПО ТЕХНИЧЕСКОМУ ОБСЛЕДОВАНИЮ ЖЕЛЕЗОБЕТОННЫХ РЕЗЕРВУАРОВ ДЛЯ НЕФТИ И НЕФТЕПРОДУКТОВ
РД 03-420-01

Сообщение от :
9.5 Для определения глубины карбонизации — оценки защитных свойств бетона берется качественная проба фенолфталеина (однопроцентный спиртовой раствор) на свежем изломе бетона.

Сообщение от :
РД 153-34.1-21.326-2001 МУ по обследованию строительных конструкций производственных зданий ТЭС. Часть 1. Железобетонные и бетонные конструкции

Сообщение от :
6.4.5 По истечении заданного срока образцы раскалывают в направлении, нормальном рабочей грани. Не более чем через 1/2 ч на поверхность скола со стороны рабочей грани наносят 0,1 %-ный раствор фенолфталеина в этиловом спирте.

Сообщение от :
ГОСТ Р
52804-2007 ЗАЩИТА БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ОТ КОРРОЗИИ

учитывая,что по ГОСТ 52804 испытываются свежеизготовленные образцы бетона,склоняюсь к 1% раствору..
прошу обследователей-асов поделиться — каким раствором стоит пользоваться для обследований при старом бетоне?

Сообщение от SomeBody:
для п.3 и 4 очень важно знать коэффициент корреляции зависимости и её ошибку иначе статистику не проведете ни по СП, ни по ГОСТ. Хотя есть один момент при применения универсальной зависимости можно по ГОСТ 18105 принять условный класс бетона по схеме Г = R*0,8 , но не менее минимальной прочности.

Какая минимальная прочность имеется ввиду? Определенная на одном из участков конструкции или частное минимальное определение на участке?

Вопрос по поводу аттестации лаборатори неразрушающего контроля на ОС, импульсный и ультразвуковой методы по контролю прочности бетона

Если «ДА», т оможете сбросить образец аттестата, потому что проанализировав подобные аттестаты пришел к выводу, что они не о том

Т.Е. Аттестация обязательна для особоопасных, уникальных и техничсеки сложных объектов кап. строительства??

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×