Над какой зоной располагаются клетки проводящей ткани
Биология
Ткани растений
Обложка урока взята с источника.
План урока:
Ткани — совокупность клеток с единым происхождением, функциями и строением. Ткани появились из-за потребностей вышедших на сушу растений.
Виды тканей растений
Ткани растений бывают простыми и сложными. Клетки в простых тканях выполняют одну основную функцию, а в сложных берут на себя дополнительные задачи. Примером простых тканей служит меристема, сложных — ксилема и флоэма.
Классификация по функциям и строению тканей растений:
Но это ещё не всё. Даже в рамках одного вида тканей клетки различаются, поэтому классификацию дополняют подвиды.
Классификация тканей Источник
Образовательная ткань
Образовательная ткань растений— родители: из них развиваются остальные ткани. Клетки недифференцированной ткани делятся множество раз и тем самым обеспечивают рост растения в длину и толщину.
Узнать клетки образовательной ткани не составляет труда: это скопления близко расположенных клеток с мелкими стенками и вакуолями и без запаса дополнительных веществ. Лишний груз этим клеткам не нужен, ведь их единственная функция — деление.
По топографической классификациимеристемы делят на:
Благодаря апикальным тканям растение растёт в длину, а благодаря латеральным — в толщину. Благодаря интеркалярным меристемам происходит рост у оснований междоузлий. Раневые тканиприходят на помощь там, где растение повреждено.
Схема распределения меристем Источник 1. Апикальная, 2. Латеральная, 3. Интеркалярная, 4. Раневая.
Основная ткань
Основная ткань растений— дом: между её клетками расположены другие ткани. Судя по названию, основная ткань составляет основу растений. Как части одного строения, клетки основной ткани выполняют разнообразные задачи, поэтому их делят на подвиды:
- Ассимиляционная (хлоренхима);
- Основная (типичная);
- Запасающая;
- Воздухоносная (аэренхима);
- Поглощающая.
В общем виде клетки этого вида ткани состоят из живых клеток с тонкими стенками. Далее строение зависит от выполняемой задачи.
Ассимиляционная паренхима отвечает за фотосинтез и газообмен: клетки по размеру средние, имеют много хлоропластов. Типичная ткань заполняет пустые места: в клетках нет хлорофилла. Запасающая паренхима хранит вещества: в клетках этой ткани откладываются крахмальные зёрна, белковые гранулы и липидные капли.Воздухоносная ткань есть у растений, которые живут в водных пространствах: клетки аэренхимы находятся на расстоянии друг от друга, имеют межклетники, которые заполнены воздухом. Поглощающая паренхима отвечает за всасывание воды через корневые волоски: клетки крупные, содержат в вакуолях специальное слизистое вещество.
Паренхима клубня картофеля Источник
Проводящая ткань
Проводящая ткань растений— лифт: по этим клеткам перемещается вода и разнообразные вещества. Если лифт движется вверх, его называют ксилемой, если вниз — флоэмой.
Дополнительная функция древесины заключается в опоре растения. Древесина образуется из клеток камбия и находится ближе к центральной части растения.
К составным частям ксилемы относят трахеиды, трахеи (сосуды), древесинные волокна и паренхима. Трахеиды и трахеи выполняют проводящую функцию, а волокна и паренхима — механическую.
Трахеиды — мёртвые клетки скошенной формы. У этих клеток есть одревесневшая оболочка, нет цитоплазмы. В стенках трахеид расположены поровые мембраны, через которые перемещается вода с растворёнными минеральными веществами. По трахеидам жидкость протекает медленно.
Трахеи —пустые трубки, которые разделены на членики. Эти клетки узкие и вытянутые с частично сохранёнными участками цитоплазмы. Боковые стенки члеников одревесневают,
а поперечные разрушаются и образуют сквозные проёмы — перфорации. Трахеи высокопроницаемы, поэтому по таким отверстиям вода перемещается быстрее, чем по поровым мембранам.
Второй тип проводящей ткани — флоэма.
Луб находится под корой.
Ситовидные трубки — скопление клеток, которые срастаются с помощью пластинок. Клетки ситовидных трубок живые, продолговатые, неодревесневшие. Ядро разрушается в начале формирования трубок. Клетки имеют стенки, в которых расположены мельчайшие отверстия, напоминающие сито. Дыры соседних клеток соединяют длинные жгуты цитоплазмы, через которые проходят вещества. Беспорядочный поток веществ регулируют клетки-спутницы, которые размещаютсявозле трубок. Также клетки-спутницы берут на себя другие функции: продукцию необходимых ферментов и энергии.
Ситовидные клетки есть у папоротникообразных и голосеменных. У этих клеток нет специальных клеток-спутниц.
Внутреннее строение стебля Источник
Покровная ткань
Покровная ткань растений— крыша и стены: эти клетки размещаются на протяжении поверхности растения.
Первичная ткань — эпидерма, которая покрывает листья и плоды. Клетки эпидермиса живые. Оболочка изгибистая, что обеспечивает прилегание клеток. Снаружи все клетки покрыты толстой кутикулой. Задачи эпидермиса сводятся к защите, регуляции газообмена через устьица и транспирации.
Вторичная ткань — перидерма, которая приходит на смену эпидерме. Клетки перидермы мёртвые, насыщенные жироподобным веществом — суберином. Перидерма состоит из феллогена (пробкового камбия), феллемы (пробки) и феллодермы (подпитывающей ткани). Феллоген, разрастаясь, синтезирует к поверхности феллему, а внутрь — феллодерму. Перидерма придаёт дополнительную защиту растению. Газообмен происходит через чечевички.
Третичная ткань — ритидом, который создаётся в результате отложения слоёв перидермы. Ритидом — группа мёртвых клеток, которая состоит из деформированных мёртвых участков коры и слоёв феллемы. Корка обеспечивает максимальную защиту.
Развитие перидермы Источник
Механическая ткань
Механическая ткань растений— каркас: эти клетки поддерживают форму растения. Благодаря прочным механическим тканям растения дают отпор разрыву. Такая ткань развивается из верхушечной меристемы, а также в результате работы камбия. Различают два вида механической ткани: колленхима и склеренхима.
Колленхима укрепляет молодые органы, располагаясь под кожицей. Клетки колленхимы живые, эластичные. Неровно утолщённая неодревеневшая клеточная стенка содержит пектин и гемицеллюлозу, что помогает клеткам растягиваться.
Склеренхима обладает большей прочностью, поэтому обеспечивает осевую опору растения.
Волокна — длинные клетки с крупными оболочками, собранные в пучки. В ксилеме располагаются древесинные волокна, а во флоэме — лубяные.
Склереиды — различные по морфологии клетки с одревесневшими стенками. Склереиды бывают палочковидные, удлинённые и звёздчатые. Такие клетки образуют скорлупу и косточки.
Механическая ткань: А – каменистые клетки, Б – клетки колленхимы, В – волокна склеренхимы Источник
Выделительная ткань растений
Выделительная ткань — сточная труба: через эти клетки уходят продукты метаболизма. Различают ткани секреторные и экскреторные.
К экскреторнымтканям относят железистые волоски, нектарники и гидатоды. Железистые волоски выделяют на поверхность минеральные соли, нектарники — нектар, а гидатоды — воду и соли. Процесс выделения гидатодами воды при низкой транспирации называется гуттацией.
В секреторных тканях продукты метаболизма накапливаются в отдельных вместилищах. Такие ткани бывают схизогенными и лизогенными. Схизогенные вместилища — межклетники, которые заполнены выделительными веществами. Лизогенные вместилища — скопления клеток, которые разрушаются после накопления веществ.
К выделительным тканям внутренней секреции относят смоляные каналы, идиобласты и млечники. Смоляные каналы накапливают смолу, идиобласты — танины, эфирные масла, а млечники — млечный сок.
Выделительные ткани Источник
Появление тканей у растений
В водной среде мягкие условия, поэтому водоросли имеют только клетки, а не развитые ткани. Потребность в организованных скоплениях клеток возникла, когда растительные организмы вышли в наземную среду. Первыми водные пространства покинули древние растения — псилофиты, у которых появилась важная проводящая ткань.
У мхов появляется единственная ткань — основная, основной задачей которой становится фотосинтез. Папоротники к паренхиме добавляют хорошо развитую проводящую ткань. У голосеменных развиваются все виды тканей: основная, проводящая, образовательная, покровная, механическая и выделительная. Ткани покрытосеменных растений достигают наивысшего развития.
Проводящая ткань: особенности строения
Почти все многоклеточные живые организмы состоят из различных типов тканей. Это совокупность клеток, похожих по строению, объединенных общими функциями. Для растений и животных они неодинаковы.
Разнообразие тканей живых организмов
В первую очередь все ткани можно разделить на животные и растительные. Они бывают разными. Давайте рассмотрим их.
Какими могут быть животные ткани?
Животные ткани бывают таких типов:
Все они, кроме первой, делятся на виды. Мышечная ткань бывает гладкой, поперечно-полосатой и сердечной. Эпителиальная делится на однослойную, многослойную — в зависимости от количества слоев, а также на кубическую, цилиндрическую и плоскую — в зависимости от формы клеток. Соединительная ткань объединяет такие виды, как рыхлая волокнистая, плотная волокнистая, ретикулярная, кровь и лимфа, жировая, костная и хрящевая.
Разнообразие тканей растений
Растительные ткани бывают следующих типов:
- основная;
- покровная;
- проводящая ткань;
- механическая;
- образовательная.
Все типы растительных тканей объединяют несколько видов. Так, к основным относятся ассимиляционная, запасающая, водоносная и воздухоносная. Покровные ткани объединяют такие виды, как кора, пробка и эпидерма. К проводящей ткани относятся флоэма и ксилема. Механическая делится на колленхиму и склеренхиму. К образовательным относятся боковые, верхушечные и вставочные.
Все ткани выполняют определенные функции, и их строение соответствует роли, которую они выполняют. В этой статье будет рассмотрена подробнее проводящая ткань, особенности строения ее клеток. Также поговорим и о ее функциях.
Проводящая ткань: особенности строения
Эти ткани делятся на два вида: флоэму и ксилему. Так как они обе сформированы из одной и той же меристемы, то в растении они расположены рядом друг с другом. Однако строение проводящих тканей двух видов различается. Давайте поговорим подробнее о двух типах проводящих тканей.
Функции проводящих тканей
Их основная роль — транспорт веществ. Однако функции проводящих тканей, относящихся не к одному виду, различаются.
Роль ксилемы — проведение растворов химических веществ от корня вверх ко всем остальным органам растения.
А функция флоэмы — проведение растворов в обратном направлении — от определенных органов растения по стеблю вниз к корню.
Что такое ксилема?
Она также еще называется древесиной. Проводящая ткань данного вида состоит из двух разных проводящих элементов: трахеид и сосудов. Также в ее состав входят механические элементы — древесинные волокна, и основные элементы — древесинная паренхима.
Как устроены клетки ксилемы?
Клетки проводящей ткани делятся на два вида: трахеиды и членики сосудов. Трахеида — это очень длинная клетка с ненарушенными стенками, в которых присутствуют поры для транспорта веществ.
Второй проводящий элемент клетки — сосуд — состоит из нескольких клеток, которые называются члениками сосудов. Эти клетки расположены друг над другом. В местах соединения члеников одного и того же сосуда находятся сквозные отверстия. Они называются перфорациями. Эти отверстия необходимы для транспорта веществ по сосудам. Перемещение разнообразных растворов по сосудам происходит намного быстрее, чем по трахеидам.
Клетки обоих проводящих элементов являются мертвыми и не содержат протопластов (протопласты — это содержимое клетки, за исключением клеточной стенки, то есть это ядро, органоиды и клеточная мембрана). Протопласты отсутствуют, так как если бы они были в клетке, транспорт веществ по ней был бы очень затруднен.
По сосудам и трахеидам растворы могут транспортироваться не только вертикально, но и горизонтально — к живым клеткам или соседним проводящим элементам.
Стенки проводящих элементов имеют утолщения, которые придают клетке прочность. В зависимости от вида данных утолщений, проводящие элементы делятся на спиральные, кольчатые, лестничные, сетчатые и точечно-поровые.
Функции механических и основных элементов ксилемы
Древесинные волокна еще называются либриоформом. Это вытянутые в длину клетки, которые обладают утолщенными одревесеневшими стенками. Они выполняют опорную функцию, обеспечивающую прочность ксилемы.
Элементы основной ткани в ксилеме представлены древесинной паренхимой. Это клетки с одревесневшими оболочками, в которых располагаются простые поры. Однако в месте соединения клетки паренхимы с сосудом находится окаймленная пора, которая соединяется с его простой порой. Клетки древесинной паренхимы, в отличие от клеток сосудов, не пустые. Они обладают протопластами. Паренхима ксилемы выполняет резервную функцию — в ней запасаются питательные вещества.
Чем отличается ксилема разных растений?
Так как трахеиды в процессе эволюции возникли намного раньше, чем сосуды, эти проводящие элементы присутствуют и у низших наземных растений. Это споровые (папоротники, мхи, плауны, хвощи). Большинство голосеменных растений также обладают только трахеидами. Однако у некоторых голосеменных есть и сосуды (они присутствуют у гнетовых). Также, в порядке исключения, названные элементы присутствуют и у некоторых папоротников и хвощей.
А вот покрытосеменные (цветковые) растения все обладают и трахеидами, и сосудами.
Что такое флоэма?
Проводящая ткань данного вида еще называется лубом.
Основная часть флоэмы — ситовидные проводящие элементы. Также в структуре луба присутствуют механические элементы (флоэмные волокна) и элементы основной ткани (флоэмная паренхима).
Особенности проводящей ткани данного вида заключаются в том, что клетки ситовидных элементов, в отличие от проводящих элементов ксилемы, остаются живыми.
Строение ситовидных элементов
Существует два их вида: ситовидные клетки и ситовидные трубки. Первые вытянуты в длину и обладают заостренными концами. Они пронизаны сквозными отверстиями, через которые и происходит транспорт веществ. Ситовидные клетки более примитивны, чем многоклеточные ситовидные элементы. Они характерны для таких растений, как споровые и голосеменные.
У покрытосеменных растений проводящие элементы представлены ситовидными трубками, состоящими из множества клеток — члеников ситовидных элементов. Сквозные отверстия двух соседних клеток образуют ситовидные пластинки.
В отличие от ситовидных клеток, в упомянутых структурных единицах многоклеточных проводящих элементов отсутствуют ядра, однако они все равно остаются живыми. Важную роль в строении флоэмы покрытосеменных растений играют также клеки-спутницы, находятщиеся рядом с каждой клеткой-члеником ситовидных элементов. В спутницах есть как органоиды, так и ядра. В них происходит обмен веществ.
Учитывая то, что клетки флоэмы живые, эта проводящая ткань не может долго функционировать. У многолетних растений период ее жизни составляет три-четыре года, после чего клетки этой проводящей ткани отмирают.
Дополнительные элементы флоэмы
Кроме ситовидных клеток или трубок, в этой проводящей ткани также присутствуют элементы основной ткани и механические элементы. Последние представлены лубяными (флоэмными) волокнами. Они выполняют опорную функцию. Не все растения обладают флоэмными волокнами.
Элементы основной ткани представлены флоэмной паренхимой. Она, так же как и ксилемная паренхима, выполняет резервную роль. В ней запасаются такие вещества, как танниды, смолы и др. Особенно развиты эти элементы флоэмы у голосеменных растений.
Флоэма различных видов растений
У низших растений, таких как папоротники и мхи, она представлена ситовидными клетками. Такая же флоэма характерна и для большей части голосеменных растений.
Покрытосеменные растения обладают многоклеточными проводящими элементами: ситовидными трубками.
Структура проводящей системы растения
Ксилема и флоэма всегда располагаются рядом и образуют пучки. В зависимости от того, как два типа проводящей ткани располагаются друг относительно друга, различают несколько видов пучков. Наиболее часто встречаются коллатеральные. Они устроены таким образом, что флоэма лежит по одну сторону от ксилемы.
Также существуют концентрические пучки. В них одна проводящая ткань окружает другую. Они делятся на два вида: центрофлоэмные и центроксилемные.
Проводящая ткань корня обладает обычно радиальными пучками. В них лучи ксилемы отходят от центра, а флоэма находится между лучами ксилемы.
Коллатеральные пучки больше характерны для покрытосеменных растений, а концентрические — для споровых и голосеменных.
Заключение: сравнение двух типов проводящих тканей
В качестве вывода приведем таблицу, в которой сокращенно указаны основные данные о двух видах проводящих тканей растений.
Над какой зоной располагаются клетки проводящей ткани
Тема: Проводящие ткани
Материалы. Стебель тыквы (Cucurbita pepo); сернокислый анилин; постоянные микропрепараты: «Продольный срез древесины сосны (Pinus sylvestris)», «Корневище орляка (Pteridium aguilinum)».
Проводящая система растений состоит из ксилемы (древесины), осуществляющей восходящий ток воды и растворенных в ней минеральных веществ от корней к листьям и флоэмы — ткани, проводящей пластические вещества (нисходящий ток) от листьев к корням. Это сложные ткани, т. к. включают различные по структуре и функциональному значению анатомические элементы.
Проводящие ткани по происхождению могут быть первичными и вторичными. Первичные образуются в результате деятельности прокамбия , а вторичные — камбия.
Ксилему составляет три типа элементов: 1) собственно проводящие (трахеиды и сосуды); 2) механические (древесинные волокна или либриформ); 3) паренхимные.
Некоторые клетки этих тканей остаются живыми на протяжении всей жизни, а другие отмирают, сохраняя определенные функции.
Основными проводящими элементами ксилемы являются трахеиды и членики сосудов (трахеи). В зрелом состоянии оба типа элементов представляют собой более или менее вытянутые клетки, лишенные протопластов и имеющие одревесневшие вторичные оболочки.
Трахеиды — это прозенхимные клетки со скошенными концами. Они отличаются от сосудов тем, что не имеют перфораций. В трахеидах передвижение воды из клетки в клетку осуществляется, главным образом, через пары пор, поровые мембраны (замыкающая пленка пор), которые отличаются высокой проницаемостью для воды и растворенных веществ.
Членики сосудов (трахеи) — это наиболее специализированные водопроводящие элементы, представляющие собой длинные (до многих метров) полые трубки, состоящие из члеников. Они образуются из вертикального ряда прозенхимных меристематических клеток прокамбия. Их боковые стенки с возрастом одревесневают и неравномерно утолщаются, а поперечные — образуют сквозные отверстия (перфорации). Выделяют несколько типов утолщения боковых стенок сосудов — кольчатые, спиральные, лестничные и др.
У покрытосеменных растений в первичной ксилеме обычно развиваются трахеиды, а во вторичной — сосуды.
Флоэма, как и ксилема, состоит из трех типов тканей: 1) собственно проводящей (ситовидные клетки, ситовидные трубки); 2) механической (лубяные волокна); 3) паренхимной.
Наиболее высокоспециализированными элементами флоэмы являются ситовидные элементы. К их характерным особенностям относятся онтогенетически измененные протопласты с ограниченной метаболической активностью и система межклеточных контактов с соседними ситовидными элементами, осуществляемых посредством специализированных участков клеточной оболочки (ситовидных полей), пронизанных отверстиями (перфорациями).
По степени специализации ситовидных полей и особенностям их распределения ситовидные элементы классифицируются на ситовидные клетки и членики ситовидных трубок.
Ситовидная трубка представляет собой вертикальный ряд клеток, соединенных между собой концами посредством ситовидных пластинок. Каждая отдельная клетка, входящая в состав ситовидной трубки называется члеником ситовидной трубки. Оболочки их целлюлозные, первичные. Органические вещества движутся сверху вниз из клетки в клетку по дезорганизованным протопластам (смесь клеточного сока с цитоплазмой). Рядом с ситовидной трубкой обычно расположены сопровождающие клетки (клетки-спутники). Они тесно связаны с члениками ситовидной трубки своим происхождением и функцией, заключающейся в регуляции передвижения веществ по флоэме.
Ситовидные клетки лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра. Их ситовидные поля рассеяны на боковых стенках.
Задание 1. Рассмотреть трахеиды на постоянном микропрепарате продольного среза древесины сосны (Pinus sylvestris). Обратить внимание на форму и расположение клеток трахеид; типы пор и их расположение.
Последовательность работы. При малом увеличении видно, что вся древесина состоит из длинных прозенхимных клеток. Это трахеиды (рис. 40). Более широкие и тонкостенные трахеиды весенней древесины постепенно переходят в толстостенные трахеиды осенней древесины с узкой полостью.
Рис. 40. Трахеиды древесины сосны (Pinus sylvestris):
1 — окаймленная пора.
Рассматривая весенние трахеиды при большом увеличении, обратить внимание на то, что между ними нет перфораций, следовательно, вода проникает из трахеиды в трахеиду только через поры, которые расположены на радиальных стенках. Это окаймленные поры, в плане они видны в виде двух концентрических окружностей.
Задание 2. Приготовить временный микропрепарат продольного среза проводящего пучка стебля тыквы (Cucurbita pepo) в сернокислом анилине. Рассмотреть сосуды с разными типами утолщений вторичной оболочки (рис. 41). Сделать рисунок.
Рис. 41. Сосуды стебля тыквы (Cucurbita pepo):
А — пористый; Б — сетчатый; В — спиральный; Г — кольчатый.
Последовательность работы. При изготовлении среза обратить внимание на то, чтобы разрез прошел через середину одного из крупных проводящих пучков. Рассмотреть сосуды очень большого диаметра, расположенные ближе к центру стебля. Они обычно не помещаются целиком в толще среза, и на срезе видна длинная пустая полость сосуда, ограниченная с двух сторон узкими полосками стенки.
Микропрепарат рассмотреть при большом увеличении. Найти очень крупные сосуды, расположенные к центру и рассмотреть их поверхность. Обратить внимание на то, что она покрыта сетью утолщений (сетчато-пористые). Затем передвинуть микропрепарат на соседние сосуды, имеющие меньшие диаметры и найти на их поверхности пористые, спиральные и кольчатые утолщения (рис. 41). Кольчатые сосуды образуются раньше других, они очень тонкие и сильно растянуты в длину, вследствие роста стебля после их возникновения. После кольчатого сосуда и участка мелкоклеточной паренхимы видны ситовидные трубки с сопровождающими клетками. Зарисовать отдельные клетки сосудов с разными типами утолщения клеточной оболочки.
Задание 3. Рассмотреть сосуды, имеющие лестничные утолщения оболочки на постоянном микропрепарате продольного среза корневища папоротника-орляка (Pteridium aguilinum) (рис. 42).
Рис. 42. Лестничный сосуд корневища папоротника-орляка (Pteridium aquilinum):
1 — щелевидная пора.
Последовательность работы. Обратить внимание на горизонтальные промежутки между перекладинами — щелевидные поры и наклонные перегородки, разделяющие членики сосудов с щелевидными перфорациями.
Задание 4. Используя микропрепарат из задания 2 изучить строение ситовидной трубки на продольном срезе стебля тыквы. Сделать рисунок (рис. 43).
Рис. 43. Часть проводящего пучка стебля тыквы (Cucurbita pepo) в продольном разрезе:
1 — ситовидная трубка, 2 — ситовидная пластинка, 3 — сопровождающая клетка, 4 — камбий, 5 — сетчато-пористый сосуд.
Последовательность работы. При большом увеличении микроскопа найти ситовидные трубки, расположенные ближе к периферии стебля, внутрь от слоя древесинных волокон. Их можно узнать по ситовидным пластинкам. Затем рассмотреть клетки-спутники, находящиеся между ситовидными трубками. Обратить внимание на число клеток, соответствующих каждому членику ситовидной трубки. Зарисовать ситовидную трубку с клетками-спутниками.
1. По каким проводящим тканям осуществляется передвижение органических веществ, а по каким — минеральных?
2. В чем сходство онтогенеза ситовидных трубок и сосудов?
3. Что такое сопровождающая клетка? Какие ее функции?
4. В чем отличие ситовидных трубок от сосудов?
5. Как долго функционируют ситовидные трубки и сосуды и с чем связано прекращение их деятельности?
6. В чем отличие сосудов от трахеид?
7. Почему кольчатые и спиральные сосуды свойственны молодым органам растений, а пористые, сетчато-пористые, лестничные — более старым?
8. Какие сосуды имеют наименьший диаметр и какие наибольший?
9. Какие перфорации между члениками сосудов являются более примитивными?
Биология
В биологии тканью называют группу клеток, имеющих сходное строение и происхождение, а также выполняющих одинаковые функции. У растений наиболее разнообразные и сложно устроенные ткани развились в процессе эволюции у покрытосеменных (цветковых). Органы растений обычно образованы несколькими тканями. Можно выделить шесть типов тканей растений: образовательную, основную, проводящую, механическую, покровную, секреторную. Каждая ткань включает подтипы. Между тканями, а также внутри них бывают межклетники — промежутки между клетками.
Образовательная ткань
Благодаря делению клеток образовательной ткани растение увеличивается в длину и толщину. При этом часть клеток образовательной ткани дифференцируется в клетки других тканей.
Клетки образовательной ткани достаточно мелкие, плотно прилегают друг к другу, имеют крупное ядро и тонкую оболочку.
Образовательная ткань в растениях находится в конусах нарастания корня (кончик корня) и стебля (верхушка стебля), бывает в основаниях междоузлий, также образовательная ткань составляет камбий (который обеспечивает рост стебля в толщину).
Клетки конуса нарастания корня. На фото виден процесс деления клеток (расхождение хромосом, растворение ядра).
Паренхима, или основная ткань
К паренхиме относят несколько разновидностей тканей. Различают ассимиляционную (фотосинтезирующую), запасающую, водоносную и воздухоносную основную ткань.
Фотосинтезирующая ткань состоит из клеток, содержащих хлорофилл, т. е. зеленых клеток. Эти клетки имеют тонкие стенки, содержат большое количество хлоропластов. Основная их функция — фотосинтез. Ассимиляционная ткань составляет мякоть листьев, входит в состав коры молодых стеблей деревьев и стебли трав.
В клетках запасающей ткани накапливаются запасы питательных веществ. Эта ткань составляет эндосперм семян, входит в состав клубней, луковиц и др. Сердцевина стебля, внутренние клетки коры стебля и корня, сочный околоплодник также обычно состоят из запасающей паренхимы.
Водоносная паренхима свойственна лишь ряду растений, обычно засушливых мест обитания. В клетках этой ткани накапливается вода. Водоносная ткань может быть как в листьях (алоэ), так и в стебле (кактусы).
Воздухоносная ткань свойственна водным и болотным растениям. Ее особенностью является наличие большого количества межклетников, содержащих воздух. Это облегчает газообмен растению, когда он затруднен.
Проводящая ткань
Общей функцией различных проводящих тканей является проведение веществ от одних органов растения к другим. В стволах древесных растений клетки проводящей ткани расположены в древесине и лубе. Причем в древесине расположены сосуды (трахеи) и трахеиды, по которым перемещается водный раствор от корней, а в лубе — ситовидные трубки, по которым перемещаются органические вещества от фотосинтезирующих листьев.
Сосуды и трахеиды — это мертвые клетки. По сосудам водный раствор поднимается быстрее, чем по трахеидам.
Ситовидные трубки являются живыми, но безъядерными клетками.
Покровная ткань
К покровной ткани относится кожица (эпидермис), пробка, корка. Кожица покрывает листья и зеленые стебли, это живые клетки. Пробка состоит из мертвых клеток, пропитанных жироподобным веществом, не пропускающим воду и воздух.
Главные функции любой покровной ткани — это защита внутренних клеток растения от механического повреждения, высыхания, проникновения микроорганизмов, перепадов температуры.
Пробка является вторичной покровной тканью, так как возникает на месте кожицы у стеблей и корней многолетних растений.
Корка состоит из пробки и отмерших слоев основной ткани.
Механическая ткань
Для клеток механической ткани характерны сильно утолщенные одревесневшие оболочки. Функции механической ткани — это придание телу и органам растений прочности и упругости.
В стеблях покрытосеменных растений механическая ткань может располагаться одним целостным слоем или же отдельными тяжами, отстоящими друг от друга.
В листьях волокна механической ткани обычно располагаются рядом с волокнами проводящей ткани. Вместе они образуют жилки листа.
Секреторная, или выделительная ткань растений
Клетки секреторной ткани выделяют различные вещества, и поэтому функции у этой ткани разные. Выделительные клетки у растений выстилают смоляные и эфиромасличные ходы, образуют своеобразные железы и железистые волоски. К секреторной ткани принадлежат нектарники цветков.
Смолы выполняют защитную функцию при повреждении стебля растения.
Нектар привлекает насекомых-опылителей.
Бывают секреторные клетки, выводящие продукты обмена, например, соли щавелевой кислоты.