3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как пользоваться макетной платой breadboard

Как пользоваться макетной платой breadboard

Давайте приступим! В этом уроке мы соберем некоторые базовые макеты, чтобы познакомить вас с основными концепциями Arduino и рабочим процессом.

Для начала закрепим плату Arduino Uno и макетную плату к пластиковой монтажной пластине. Поверьте, это очень удобно, когда плата Ардуино и макетная плата физически соединены вместе. На беспаечной макетной плате есть наклейка, которую вы можете отклеить. (отделите также бумажную подложку монтажной платы). Arduino Uno крепится винтами снизу. Здесь пригодится небольшая отвертка. Для надежной посадки требуются только две диагонально расположенные крепежные пары винт / гайка. Резиновые ножки (в комплекте) помогают устойчивости всей конструкции, и теперь ваша схема также более защищена от любых кусков провода или металлических винтиков, которые могут быть разбросаны на вашем рабочем столе.

Для уроков вам потребуется:

1. Компьютер с установленной программой Arduino

7. Яркий RGB светодиод или три отдельных светодиода красного синего и зеленого цвета

8. Пять постоянных резисторов сопротивлением от 220 Ом до 1 К. Все пять одного номинала, подойдет любой номинал из указанного диапазона

10. Небольшая отвертка

Макетная плата (BreadBoard)

Первая наша схема — «Мигалка»

Первая схема, которую мы построим на макетной плате, соединяет красный светодиод с платой Arduino Uno. Делаем монтаж неспеша, производя одно соединение за раз. Соблюдайте цвет проводов, чтобы облегчить задачу нам обоим. Дважды проверьте, что ваш USB-кабель отсоединен, прежде чем выполнять какие-либо подключения к вашей плате. Возьмите красный провод и вставьте один конец в гнездо, обозначенное 5V на плате Arduino. Подключите другой конец красного провода к шине, обозначенноой красной линией, — это будет ваша шина питания.

Аналогичным образом возьмите синий провод и подключите его к одному из контактов, обозначенных GND, рядом с красным проводом. На Arduino Uno есть три гнезда для заземления, и все они подключены к той же земле, что и чип и остальная часть платы, поэтому не имеет значения, какой из них вы выберете. Подключите другой конец синего провода к голубой шине заземления на макете. Это обычная конфигурация, которую вы будете использовать снова и снова. Она должна стать вашей отправной точкой для новых макетов, даже если вы не используете обе шины сразу. Схемы этого урока подключатся к земляной шине, а в следующем уроке вы будете использовать некоторые компоненты, которые будут подключаться к шине питания 5 В .

Затем подключите желтый провод к контакту 13 платы Arduino . Вставьте другой конец в любой горизонтальный ряд на макете (строка 10, показанная на фото). Для этой первой схемы все ваши соединения должны быть реализованы на ближайшей к плате Arduino половине макета.

Подключите другой синий провод от любого штыря на вашей земляной шине к другому горизонтальному ряду на вашем макете (строка 18, показанная на фото).

Теперь возьмите резистор 1K (полосы: коричнево-черно-красное-золотое) и подключите один из его выводов (не имеет значения, какой) в тот же ряд, что и синий провод. Резисторы выглядят одинаково, за исключением полос, используемых для указания их номиналов.

Подключите другой конец резистора к ряду рядом с желтым проводом.

Теперь возьмите красный светодиод (светоизлучающий диод). Посмотрите, видите, один из его проводов длиннее другого? Это положительный электрод (анод), а более короткий вывод — отрицательный (катод). В схеме, которую мы строим, положительный заряд поступает с пина Arduino и проходить через светодиод и резистор на землю, поэтому вы должны подключить положительный (более длинный) вывод светодиода к желтому проводу, а отрицательный (более короткий) вывод светодиода — к резистору. Резистор помогает ограничить ток, проходящий через светодиод, это необходимо чтобы предотвратить выход светодиода из строя из-за превышения допустимого тока.

Еще один способ убедиться в полярности светодиода — проверить его мультиметром, включённым в режим проверки PN переходов (прозвонки диодов). Светодиод неярко засветится, когда плюсовой (красный) щуп мультиметра будет соединен с его анодом, а минусовой щуп — с катодом. Однако следует иметь в виду, что не все мультиметры в режиме проверки диодов имеют на щупах достаточное для зажигания светодиода напряжение. гарантированно это могут мультиметры от Richmeters, например RM109, RM102 или RM409b.

Примеры программ дают отличные отправные точки для экспериментов и ваших собственных проектов. Эти примеры неоценимы с точки зрения получения вами опыта работы с Arduino. Используйте их!

При написании первого кода часто возникает много опечаток, что может вызвать запутывающие ошибки. Примеры пригодятся, если вы хотите исправить собственный нерабочий код (такой процесс называется отладкой). Сравнение вашей работы с законченными примерами рабочего кода может стать одной из полезных стратегий, помогающих отлаживать ваш собственный код.

Давайте подробнее рассмотрим элементы этого базового скетча Arduino. Прежде всего идет небольшой комментарий:

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:

Это просто комментарий, призванный помочь людям понять смысл программы. В программах Arduino комментарии начинаются двумя косыми линиями. В момент компиляции игнорируется весь текст, находящийся в строке после двух косых линий. Поэтому комментарии не влияют на размер вашей программы. Обязательно комментируйте ваш код! Вы можете легко забыть, какие действия должен выполнять какой-либо участок вашей программы. Я настоятельно рекомендую вам привыкнуть подробно комментировать ваш код и читать комментарии в каждом из примеров, которые мы используем в этом классе.

Следующая строка — объявление переменной. Вы можете представить переменную как «ведро» для некоторой информации. Переменные, также как и вёдра, имеют размеры и формы для хранения различной информации. Переменные также имеют имена, такие как обязательная надпись на ведре.

Эта строка кода определяет переменную типа int, что означает целое число. Вспомните о математическом классе начальной школы, когда вы, возможно, узнали, что целые числа — это целые числа (положительные или отрицательные).

Итак, у нас есть «ведро», которое может содержать целое число. Имя переменной — Led , но c таким же успехом может быть например MyLEDPin или любое слово (только буквы и цифры, чувствительные к регистру), всё это зависит только от вас. Я настоятельно рекомендую использовать осмысленные имена для ваших переменных, чтобы вы могли отслеживать, что делает ваша программа!

После строки вышеприведенного кода в любое время, когда мы видим Led в программе, в реальности это будет заменено на число 13. Это удобно для таких конфигураций, как наша, где мы хотим, чтобы можно было ссылаться на тот контакт, к которому подключен светодиод. Если впоследствии мы захотим изменить номер контакта, то нам нужно будет поменять число только один раз в одном месте.

// the setup routine runs once when you press reset:
void setup() <
>

Как отмечается в комментарии, любой код, помещенный между этой строкой и закрывающей фигурной скобкой > является частью инициализации, то есть это секция кода, которая выполняется один раз за сеанс. Код внутри процедуры инициализации выполняется один раз, когда ваша плата включается, или когда вы нажимаете кнопку сброса Arduino.

// initialize the digital pin as an output.
pinMode(led, OUTPUT);
>

Пины 0-13 на плате Arduino являются цифровыми портами ввода / вывода, это означает, что они могут быть либо входами, либо выходами. pinMode (); это функция, сокращенный способ ссылаться на подмножество команд так сказать » под капотом » .

Читать еще:  Цвет обоев под серый пол

Программа Arduino показывает вам, что она распознает некоторые элементы кода, изменяя цвет их текста. Если когда-либо ключевое слово не меняет цвет при вводе его в Arduino, у вас, вероятно, есть ошибка орфографии, ошибка капитализации или другая опечатка.

Блоки информации, передаваемые в функции, называются аргументами. Поскольку переменная led будет обслуживать ее содержимое в любое время, когда вы вводите ее, номер пина платы, который передается pinMode (); равен 13, а состояние — OUTPUT . Это конфигурирует контакт с номером 13 для управления светодиодом, а фигурная скобка закрывает инициализацию.

// the loop routine runs over and over again forever:
void loop() <

Это основная часть (главный цикл) программы Arduino, в которой обычно происходят такие действия, как проверка входных контактов и управление выходными контактами. Все, что мы напишем между этой строкой и закрывающей фигурной скобкой > будет повторяться до тех пор, пока не будет отключено питание платы.

digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)

Первой в цикле идет функция digitalWrite () ; , которая принимает два блока информации: номер пина и состояние HIGH (включено) или LOW (выключено). Эти блоки информации, переданные в функции, называются аргументами. Поскольку переменная led будет передавать свое содержимое в любой момент, когда вы ее напишете, номер вывода, который будет передан в качестве аргумента в функцию digitalWrite (); будет равен 13, а состояние вывода будет HIGH (включено). Таким образом, эта строка кода приводит к включению светодиода, подключенного к выводу 13.

delay(1000); // wait for a second

delay (); является еще одной встроенной функцией Arduino. Она приостанавливает программу на некоторое время, задаваемое в миллисекундах. Эта строка кода приостанавливает программу на 1000 мс, то есть на одну секунду.

digitalWrite(led, LOW); // turn the LED off by making the voltage LOW

Как мы уже разобрали ранее, функция digitalWrite (); может включать или выключать выходной контакт. На этот раз он устанавливает контакт 13 в состояние LOW (выкл.).

delay(1000); // wait for a second
>

Эта строка приостанавливает программу на время, равное одной секунде, а фигурная скобка означает конец цикла. Итак, чтобы подвести итог, программа включает и выключает светодиод с интервалом в одну секунду. Давайте попробуем изменить этот интервал. Например, вы можете создать более неравномерное мигание:

void loop() <
digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
delay(2000); // wait for two seconds
digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
delay(500); // wait for a half second
>

Попробуйте загрузить измененный скетч в свою плату Arduino и посмотрите как он себя поведет.

Отлично! Если вы еще не совсем понимаете каждую мелочь, ничего страшного. Как и изучение любого языка, язык программирования Arduino имеет свой собственный синтаксис и структуру, в которых вы должны научиться ориентироваться. Постепенно, с практикой, это будет более понятно.

Как пользоваться беспаечной макетной платой Arduino breadboard

Для конструирования и отладки прототипов самых различных устройств на ардуино используются макетные платы (другое название – беспаечные монтажные платы и breadboard). Они бывают нескольких разновидностей и отличаются по размерам и некоторым другим конструктивным особенностям. Макетные платы breadboard могут помочь как начинающим инженерам для создания простых схем, так и при макетировании сложных устройств. Что такое макетная плата и как пользоваться этим приспособлением расскажет данная статья.

Способы монтажа электронных схем

Редко какой реальный проект Arduino содержит менее 5-10 элементов, соединенных между собой. Даже в простой хорошо всем известной схеме маячка применяются 2 элемента, светодиод и резистор, которые надо как-то соединять друг с другом. И тут как раз и встает вопрос о том, каким способом это сделать.

На сегодняшний момент существуют следующие основные способы монтажа, которыми используются в электронике и робототехнике на этапе создания прототипов:

  • Пайка. Для этого применяют специальные платы с отверстиями, в которые вставляются детали и соединяются друг с другом пайкой (с использованием паяльника) и перемычками.
  • Накрутка. По данной технологии контактные соединения устройств объединяются с макетной платой при помощи обмотки чистого провода к штыревому контакту.

Самым современным вариантом для создания прототипов является беспаечная макетная плата, которая обладает несомненными преимуществами:

  • Возможность проводить отладочные работы большое количество раз изменяя модификацию схем и способы подключения устройств;
  • Возможность соединения нескольких плат в одну большую, что позволяет работать с более сложными и большими проектами;
  • Простота и быстрота создания прототипов;
  • Долговечность и надежность.

Английский вариант названия беспаечной макетной платы – breadboard.

Схема макетной платы

Чтобы знать, как пользоваться макетной платой, следует понять принцип ее устройства.

Макетная плата для монтажа без пайки имеет пластиковое основание с множеством отверстий (стандартное расстояние между ними составляет 2,54 мм). Внутри конструкции расположены ряды металлических пластин. На каждой пластине имеются клипсы, которые спрятаны в пластиковой части установки.

Включение проводов выполняется именно в эти клипсы. При подключении проводника к одному из отдельных отверстий, контакт одновременно подключается и ко всем остальным контактам отдельного ряда.

Стоит обратить внимание, что одна рельса содержит 5 клипс. Это общий стандарт для всех беспаечных плат. То есть, к каждому рельсу можно подсоединить до пяти элементов, и они будут соединены между собой.

Следует отметить, что хотя в каждом ряду расположены десять отверстий, они все-таки разделены на две изолированные части, по пять в каждой. Между ними расположен рельс без пинов. Такая конструкция необходима для изоляции пластин друг от друга, и позволяет просто подключать микросхемы, выполненные в DIP-корпусах.

Некоторые макетные платы включают также по две линии питания с каждой из сторон. Обычно «красная линия» используется для подачи «+» напряжения, «синяя» – для «-». За счет наличия двух шин питания на плату могут подаваться два различных уровня напряжения.

Для упрощения ориентации на макетную плату также нанесены цифровые и буквенные обозначения, которыми можно руководствоваться, создавая, например, инструкцию для подключения.

Основные виды макетных плат

Макетные платы различаются по количеству выводов, расположенных на панели, числом шин и конфигурацией. Бывают и макетные платы, в которых контактные соединения выполняются посредством пайки, однако работать с ними сложнее, чем с беспаечными устройствами.

В зависимости от характеристик наиболее распространены такие виды:

  • Для сборки больших микросхем в основном используются беспаечные платы на 830 или 400 отверстий. Для соединения нескольких компонентов и подвода проводов к необходимым точкам – на 8, 10, 16 отверстий;
  • С наличием пазов для сцепления плат, которые позволяют реализовывать достаточно большие проекты;
  • С наличием самоклейки на основании для надежного закрепления на устройстве;
  • С нанесенными на плату обозначениями для подключения устройств.

В зависимости о стоимости и производителя в комплектацию могут входить и дополнительные аксессуары – провода-джамперы, разнообразные разъемы. Но главным критерием качества всегда остается количество контактных разъемов и их технические характеристики.

Как пользоваться макетной платой

Пользоваться макетной платой достаточно просто. При создании схемы в отверстия на пластиковом корпусе вставляются необходимые элементы – конденсаторы, резисторы, различные индикаторы, светодиоды и т.д. Ширина разъемов позволяет подключать к контактам проводники с сечением от 0,4 до 0,7 мм.

Читать еще:  Мебель из полетов своими руками

Простейшим примером создания прототипа схемы с использованием макетной платы может стать такой вариант реализации:

Для ее сборки необходимо взять:

  • Макетную плату (breadboard);
  • провода для соединения;
  • 1 светодиод;
  • тактовую кнопку;
  • резистор с номинальным сопротивлением 330 Ом;
  • батарейку типа «Крона» на 9В.

Плюс батарейки подключается к плюсовой шине, а минус к отрицательной. Если схема собрана правильно, то при нажатии на кнопку будет обеспечиваться загорание светодиода.

Внимание! Беспаечные макетные платы абсолютно недопустимо использовать с напряжением 220В!

Макетные платы breadboard оптимальны для создания практически любых цифровых схем и не предназначены для сборки аналоговых схем, с высокой чувствительностью к величине сопротивления. В своей практике их часто используют как новички, познающие основы схемотехники, так и опытные профессионалы ввиду простоты монтажа и высокого качества соединения рабочих контактов.

Быстрая сборка схем на беспаечных макетных платах

Давайте рассмотрим устройство и назначение беспаечных макетных плат. В чем их преимущество перед другими видами сборки, и как с ними работать, а также какие схемы можно быстро собрать на них новичку.

Предыстория

Первой проблемой с которой сталкивается радиолюбитель это даже не отсутствие теоретических знаний, а отсутствия средств и знаний о способах монтажа электронных устройств. Если вы не знаете как работает та или иная деталь, это не помешает вам подключить её по схеме электрической принципиальной, а вот чтобы наглядно и качественно собрать схема нужна печатная плата. Чаще всего их изготавливают по методу ЛУТ, но лазерный принтер есть не у всех. Наши отцы и деды рисовали платы вручную лаком для ногтей или краской, а потом их вытравливали.

Здесь новичка настигает вторая проблема — отсутствие реактивов для травления. Да, безусловно, хлорное железо продается в каждом магазине радиоэлектронных компонентов, но на первых порах и так нужно много всего приобрести и изучить, что уделить внимания технологии травления плат из фольгированного текстолита или гетинакса просто сложно. Да и не только новичкам, но и опытным радиолюбителям порой нет смысла травить плату и тратить средства на недоработанное изделие на этапах его наладки.

Чтобы избежать проблем с поиском хлорного железа, текстолита, принтера и не получить от жены (мамы) за несанкционированное использование утюга, можно практиковаться в монтаже электронных устройств на беспаечных макетных платах.

Что такое беспаечная макетная плата?

Как видно из названия это такая плата, на которой можно собрать макет устройства без использования паяльника. Макетка — так её называют в народе — в магазинах присутствует разных размеров и модели несколько отличаются по компоновке, но принцип действия и внутреннее их устройство одинаковы.

Макетная плата состоит из корпуса из ABS пластика, в котором расположены разъёмные соединения, которые напоминают сдвоенные металлические шины между которыми зажимается проводник. На лицевой части корпуса отверстия, пронумерованные и промаркированные, в них можно вставлять провода, ножки микросхема, транзисторов и других радиодеталей в корпусах с выводами. Взгляните на картинку ниже, на ней я всё это изобразил.

На рассмотренной печатной плате крайние два столбца отверстий с каждой из сторон объединили вертикально общими шинами, из которых обычно формируют шину плюсового контакта источника питания и минусовую (общую шину). Обычно обозначаются красной и синей полосой по краю платы плюс и минус соответственно.

Средняя часть платы разделена на две части, каждая из частей объедены по строчно по пять отверстий в ряд на данной конкретной плате. На рисунке изображено схематическое соединение отверстий (черными сплошными линиями).

Внутренняя структура платы изображена на рисунке ниже. Сдвоенные шины зажимают проводники, что и проиллюстрированно. Жирными линиями обозначены внутренние соединения.

Такие платы в англоязычной среде называются Breadboard именно по такому названию вы сможете найти её на aliexpress и подобных интернет магазинах.

Как с ней работать?

Просто в отверстия вставляете ножки электронных компонентов, соединяя между собой детали по горизонтальным линиям, а с крайних вертикальных подаёте питание. Если нужна перемычка часто используют специальные с тонкими штекерами на конца, в магазинах их можно встретить под название «перемычки dupont» или перемычки для ардуино, её кстати тоже можно вставить в такую макетку и собирать свои проекты.

Если вам не хватило размеров одной макетной платы вы можете совместить несколько, он словно пазлы вставляются друг в друга, обратите внимание на первой картинке в статье схема собрана на двух соединенных платах. На одной из них есть шип, а на другой выемка, скошенные от наружной части к корпусу платы, чтобы конструкция не развалилась.

Сборка простых схем на макетной плате

Начинающему радиолюбителю важно быстро собрать схему чтобы убедиться в работоспособности и понять как она работает. Давайте рассмотрим как выглядят разные схемы на макетной плате.

Схема симметричного мультивибратора советуется как первая многим новичкам, она позволяет научиться соединять детали последовательно и параллельно, а также определять цоколевку транзисторов. Её можно собрать навесным монтажом или развести печатную плату, но это требует пайки, а навесной монтаж несмотря на свою простоту, на самом деле очень сложен для начинающих и чреват замыканиями или плохим контактом.

Посмотрите как просто она выглядит на беспаечной макетной плате.

Кстати обратите внимание здесь не использовались перемычки Dupont. Вообще, их не всегда можно найти в радиомагазинах, а особенно в магазинах маленьких городов. Вместо них можно использовать жилы от интернет-кабеля (Витая пара) они в изоляции, а жила не покрыта лаком, что позволяет быстро оголить конец кабеля, сняв небольшой слой изоляции и вставить в разъём на плате.

Соединять вы можете детали как угодно, лишь бы обеспечить нужную цепь, вот та же схема, но собрана слегка иначе.

Кстати для описания соединений вы можете пользоваться маркировкой платы, столбцы обозначают буквами, а строки цифрами.

Для ваших конструкций встречаются такие блоки питания, на них есть штекера которые монтируются в беспаечную плату подключаясь к шинам «+» и «-». Это удобно, на нём есть выключатель и линейный малошумящий стабилизатор напряжения. В целом вам не составит труда развести такую плату самому и собрать её.

Вот так можно подключить светодиод, например для его проверки. На картинке изображена более “продвинутая” версия печатной платы с зажимными клеммами для подключения источника питания. Анод светодиода подключен к плюсу питания (красная шина) а катод на горизонтальную шину рабочей области, где и соединен с токоограничительным резистором.

Источник питания на линейном стабилизаторе типа L7805, или любой другой микросхеме серии L78xx, где хх — нужное вам напряжение.

Собранная схема пищалки на логике. Правильное название такой схемы — Генератор импульсов на логических элементах типа 2и-не. Сначала ознакомьтесь со схемой электрической принципиальной.

В качестве логической микросхемы подойдет отечественная К155ЛА3, либо иностранная типа 74HC00. Элементы R и C задают рабочую частоту. Вот её реализация на плате без пайки.

Справа заклееный белой бумажкой — буззер. Его можно заменить светодиодом, если уменьшить частоту.

Чем больше Сопротивление ИЛИ ёмкость — тем меньше частота.

А вот так выглядит типовой проект Ардуинщика на стадии тестирования и разработки (а иногда и в конечном виде, зависит от того насколько он ленив).

Читать еще:  Положение о портфолио студента

Собственно благодаря проекту Arduino в последнее время популярность “бредбордов” существенно возросла. Они позволяют быстро собирать схемы и проверять их работоспособность, а также использовать в качестве разъёма при перепрошивке микросхем в DIP корпусе, и в других корпусах, если есть переходник.

Ограничения беспаечной макетной платы

Несмотря на свою простоту и очевидные преимущества перед пайкой, беспаечные макетки имеют и ряд недостатков. Дело в том что не все цепи нормально работают в такой конструкции, давайте рассмотрим подробнее.

Перегрузка и паразитные составляющие

На беспаечных макетных платах не рекомендуется собирать мощные преобразователи, а особенно импульсные схемы. Первые не будут нормально работать по причине токовой пропускной способности контактных дорожек. Не стоит залазить за токи более 1-2 Ампер, хотя в интернете встречаются и сообщения о том что включают и 5 Ампер, делайте сами выводы и экспериментируйте.

Импульсные схемы могут и вовсе не заработать по причине большого числа паразитных емкостей и индуктивностей в схеме. Расположение шин такое, что они проходят вдоль друг друга и имеют достаточно большую площадь. Это вызывает лишние наводки и не улучшает стабильность работы импульсных и прецизионных схем.

Электробезопасность

Не стоит забывать и о том, что высокое напряжение опасно для жизни. Макетирование устройств работающих, например от 220 В ЗАПРЕЩЕНО категорически. Хоть и выводы закрыты пластиковой панелью, но куча проводников и перемычек могут привести к случайному замыканию или поражению электрическим током!

Заключение

Беспаечная макетная плата годится для простых схем, аналоговых схем которые не предъявляют высоких требованиям к электрическим соединениям и точности, автоматики и цифровых схем, которые не работают на высоких скоростях (ГигаГерцы и десятки МегаГерц — это уже слишком). При этом высокое напряжение и токи опасны и в таких целях лучше использовать навесной монтаж и печатные платы, при этом новичку не следует производить и навесного монтажа таких цепей. Стихия беспаечных макетных плат — простейшие схемы до десятка элементов и любительские проекты на Ардуино и других микроконтроллерах.

Как пользоваться беспаечной макетной платой Arduino breadboard

Для конструирования и отладки прототипов самых различных устройств на ардуино используются макетные платы (другое название – беспаечные монтажные платы и breadboard). Они бывают нескольких разновидностей и отличаются по размерам и некоторым другим конструктивным особенностям. Макетные платы breadboard могут помочь как начинающим инженерам для создания простых схем, так и при макетировании сложных устройств. Что такое макетная плата и как пользоваться этим приспособлением расскажет данная статья.

Способы монтажа электронных схем

Редко какой реальный проект Arduino содержит менее 5-10 элементов, соединенных между собой. Даже в простой хорошо всем известной схеме маячка применяются 2 элемента, светодиод и резистор, которые надо как-то соединять друг с другом. И тут как раз и встает вопрос о том, каким способом это сделать.

На сегодняшний момент существуют следующие основные способы монтажа, которыми используются в электронике и робототехнике на этапе создания прототипов:

  • Пайка. Для этого применяют специальные платы с отверстиями, в которые вставляются детали и соединяются друг с другом пайкой (с использованием паяльника) и перемычками.
  • Накрутка. По данной технологии контактные соединения устройств объединяются с макетной платой при помощи обмотки чистого провода к штыревому контакту.

Самым современным вариантом для создания прототипов является беспаечная макетная плата, которая обладает несомненными преимуществами:

  • Возможность проводить отладочные работы большое количество раз изменяя модификацию схем и способы подключения устройств;
  • Возможность соединения нескольких плат в одну большую, что позволяет работать с более сложными и большими проектами;
  • Простота и быстрота создания прототипов;
  • Долговечность и надежность.

Английский вариант названия беспаечной макетной платы – breadboard.

Схема макетной платы

Чтобы знать, как пользоваться макетной платой, следует понять принцип ее устройства.

Макетная плата для монтажа без пайки имеет пластиковое основание с множеством отверстий (стандартное расстояние между ними составляет 2,54 мм). Внутри конструкции расположены ряды металлических пластин. На каждой пластине имеются клипсы, которые спрятаны в пластиковой части установки.

Включение проводов выполняется именно в эти клипсы. При подключении проводника к одному из отдельных отверстий, контакт одновременно подключается и ко всем остальным контактам отдельного ряда.

Стоит обратить внимание, что одна рельса содержит 5 клипс. Это общий стандарт для всех беспаечных плат. То есть, к каждому рельсу можно подсоединить до пяти элементов, и они будут соединены между собой.

Следует отметить, что хотя в каждом ряду расположены десять отверстий, они все-таки разделены на две изолированные части, по пять в каждой. Между ними расположен рельс без пинов. Такая конструкция необходима для изоляции пластин друг от друга, и позволяет просто подключать микросхемы, выполненные в DIP-корпусах.

Некоторые макетные платы включают также по две линии питания с каждой из сторон. Обычно «красная линия» используется для подачи «+» напряжения, «синяя» – для «-». За счет наличия двух шин питания на плату могут подаваться два различных уровня напряжения.

Для упрощения ориентации на макетную плату также нанесены цифровые и буквенные обозначения, которыми можно руководствоваться, создавая, например, инструкцию для подключения.

Основные виды макетных плат

Макетные платы различаются по количеству выводов, расположенных на панели, числом шин и конфигурацией. Бывают и макетные платы, в которых контактные соединения выполняются посредством пайки, однако работать с ними сложнее, чем с беспаечными устройствами.

В зависимости от характеристик наиболее распространены такие виды:

  • Для сборки больших микросхем в основном используются беспаечные платы на 830 или 400 отверстий. Для соединения нескольких компонентов и подвода проводов к необходимым точкам – на 8, 10, 16 отверстий;
  • С наличием пазов для сцепления плат, которые позволяют реализовывать достаточно большие проекты;
  • С наличием самоклейки на основании для надежного закрепления на устройстве;
  • С нанесенными на плату обозначениями для подключения устройств.

В зависимости о стоимости и производителя в комплектацию могут входить и дополнительные аксессуары – провода-джамперы, разнообразные разъемы. Но главным критерием качества всегда остается количество контактных разъемов и их технические характеристики.

Как пользоваться макетной платой

Пользоваться макетной платой достаточно просто. При создании схемы в отверстия на пластиковом корпусе вставляются необходимые элементы – конденсаторы, резисторы, различные индикаторы, светодиоды и т.д. Ширина разъемов позволяет подключать к контактам проводники с сечением от 0,4 до 0,7 мм.

Простейшим примером создания прототипа схемы с использованием макетной платы может стать такой вариант реализации:

Для ее сборки необходимо взять:

  • Макетную плату (breadboard);
  • провода для соединения;
  • 1 светодиод;
  • тактовую кнопку;
  • резистор с номинальным сопротивлением 330 Ом;
  • батарейку типа «Крона» на 9В.

Плюс батарейки подключается к плюсовой шине, а минус к отрицательной. Если схема собрана правильно, то при нажатии на кнопку будет обеспечиваться загорание светодиода.

Внимание! Беспаечные макетные платы абсолютно недопустимо использовать с напряжением 220В!

Макетные платы breadboard оптимальны для создания практически любых цифровых схем и не предназначены для сборки аналоговых схем, с высокой чувствительностью к величине сопротивления. В своей практике их часто используют как новички, познающие основы схемотехники, так и опытные профессионалы ввиду простоты монтажа и высокого качества соединения рабочих контактов.

Ссылка на основную публикацию
Adblock
detector