0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Вихревой теплогенератор новый источник тепла в доме

Критерии выбора лучшего вихревого теплогенератора

Вихревой теплогенератор позволяет получать тепло в результате преобразования энергий: одного ее рода в другой эквивалент. Производительность таких устройств крайне высока, в результате чего жидкость может нагреваться до 95 градусов. А это позволяет обеспечивать объекты разной величины и целевого назначения горячей водой и теплом с существенной экономией.

Область применения теплогенераторов

На сегодняшний день помимо проведения непрерывных разработок уже вводятся в эксплуатацию альтернативные источники энергии и тепла. В зависимости от условий рабочей среды могут применяться различные агрегаты для обогрева помещения или системной подачи горячей воды. В качестве одного из таких вариантов выступает вихревой теплогенератор.

Смотрим видео, принцип работы и область применения:

Основная задача подобных агрегатов заключается в нагреве воды. В результате высокой эффективности этого процесса можно направлять полученное тепло на отопление производственных, гражданских, сельскохозяйственных и частных объектов. При этом вихревой теплогенератор позволяет организовать полностью автономную систему отопления. Дополнительно к этому свойство данного устройства преобразовывать один вид энергии в другой может обеспечить любой объект горячей водой.

Основы функционирования

Достоверного и подтвержденного объяснения того, как работает вихревой теплогенератор, до сих пор нет. Известно лишь, что функционирует такой агрегат на основе процесса кавитации. При вращении воды посредством ротора происходит образование пузырьков, заполненных газообразной средой. По мере движения жидкости пузырьки «схлопываются», что, по мнению многих, как раз и является причиной нагрева воды. Прогретая жидкость подается в систему отопления. Приблизительная схема функционирования выглядит следующим образом:

Тем не менее, исследования не останавливались и сегодня вихревой теплогенератор представлен довольно большим количеством исполнений. Тот факт, что разработки продолжились, несмотря на отсутствие твердого основания для подобных процессов, объясняется высоким КПД, так как нагрев жидкости происходит с эффективностью 100%.

Ряд преимуществ и недостатков

Вихревой высокопроизводительный теплогенератор представлен большим количеством исполнений как раз благодаря тому, что подобные устройства характеризуются рядом значимых достоинств, среди которых:

Возможность обеспечить объект горячей водой и достаточным количеством тепла для эффективного отопления;

  • Вихревой кавитационный теплогенератор позволяет организовать полностью автономную отопительную систему;
  • Отсутствует необходимость принудительного охлаждения;
  • В зависимости от исполнения к числу преимуществ может быть добавлена компактность;
  • Непродолжительные сроки окупаемости, что также зависит от модели аппарата (от 6 до 12 месяцев);
  • Эффективный прогрев рабочей среды характеризуется небольшими тепловыми потерями.
  • Как и любой другой альтернативный источник тепла, вихревой кавитационный теплогенератор не пользуется широкой популярностью, несмотря на довольно высокую эффективность. Соответственно, один из главных недостатков – высокая стоимость, что отчасти обусловлено незначительным уровнем распространения подобной техники, несмотря на то, что сегодня производители предлагают различные модели.

    Рекомендации по выбору

    Вихревой кавитационный теплогенератор существует в разных исполнениях. Сегодня наиболее распространены устройства, работающие на водяной основе, то есть, в качестве теплоносителя выступает жидкость.

    Но есть возможность приобрести и твердотопливный агрегат, на выходе которого образуется газообразная смесь дымового газа и воздушной среды.

    Теплогенератор твердотопливный высокопроизводительный вихревой отличается возможностью сжигания древесины высокой влажности (до 65%). Соответственно, при выборе учитывается назначение агрегата и предполагаемая нагрузка, так как существуют исполнения с разным уровнем тепловой мощности. В зависимости от того, какой по величине объект предполагается обслуживать, подбирается подходящее устройство.

    В случае с твердотопливным оборудованием важно учесть скорость расхода топлива, размеры погрузочной камеры и вид загрузки топлива. Можно подбирать вихревой разнотипный теплогенератор по уровню тепловой мощности, а можно обратить внимание на пункт в сопроводительной документации о том, какой величины объем допускается прогревать. Немаловажным является вес, а также габаритные размеры оборудования.

    Для крупных помещений и зданий предполагается использование массивных агрегатов, тогда как для частного жилья достаточно устройства мощностью 2,2 кВт и весом всего 40 кг.

    Обзор моделей разных конструкций

    Если планируется задействовать вихревой теплогенератор, то можно купить его по цене 62 000 руб., как, например, модель мощностью 2,2 кВт от производителя ЗАО «Индустриальные технологии 21». Это жидкостный агрегат, который может быть подключен к новой или уже действующей системе отопления. Агрегат обслуживает помещение объемом до 90 куб. м, его вес составляет 40 кг.

    Смотрим видео о продукции компании «Индустриальные технологии 21»:

    Если выбрать твердотопливное исполнение, то в данном случае рассматривается более производительное оборудование с тепловой мощностью от 250 до 700 кВт. Например, модели ТВВ-Р-250, ТВВ-Р-500, ТВВ-Р-700. Все они предполагают ручную загрузку топлива. Но более мощные исполнения потребляют больше топлива. Если модель 250 расходует 120 кг/час, то исполнение 700 потребляет около 340 кг/час. Существуют устройства намного более производительные тепловой мощностью 2 500 кВт. Если планируется использовать такие вихревые теплогенераторы, то их цена будет заметно выше.

    Рекомендации по эксплуатации

    Чем меньше габаритные размеры подобной техники, тем более простым будет ее эксплуатация. Например, существуют полностью автономные устройства с автоматическим управлением. При этом пользователю нет необходимости участвовать в процессе. А вот при использовании некоторых исполнений твердотопливных теплогенераторов без участия обученного оператора для загрузки топлива не обойтись, так как в данных агрегата предполагается ручная подача древесины.

    Сегодня существуют разные исполнения подобной техники с полностью автоматизированным исполнением, включая и предустановленный температурный режим. Учитывая, что агрегаты такого рода полностью безопасны, как с точки зрения экологичности, так и с точки зрения пожарной безопасности, то нет необходимости их постоянного контроля.

    Но для эффективной продолжительной работы рекомендуется периодически производить обслуживание, в особенности, агрегатов, которые работают с жидкостным теплоносителем.

    Таким образом, для организации отопительной системы и горячего водоснабжения не всегда обязательно обращаться к стандартным решениям. На практике оказывается, что при использовании тепловых установок на базе вихревых теплогенераторов отмечается существенная экономия в сравнении с прочими видами отопительных систем.

    Читать еще:  Калорийность природного газа при нормальных условиях

    В результате можно получить не просто высокопроизводительную технику, но еще и экономить при ее эксплуатации. Несмотря на довольно высокую стоимость подобных агрегатов, их дальнейшая эксплуатация полностью окупается, причем этого не придется ждать слишком долго, так как в некоторых случаях сроки окупаемости достигают 6 месяцев.

    Теплогенератор – эффективный и экономный источник тепла в доме

    Что такое теплогенератор, как он работает и какими достоинствами обладает? Раньше я сам неоднократно задумывался над этими вопросами, но теперь, обладая определенными знаниями, постараюсь подробно на них ответить. А также расскажу, может ли вообще использоваться это прибор в бытовых целях.

    Теплогенератор – эффективный прибор отопления

    Немного истории

    Теплогенератор, или тепловой насос – это прибор, который преобразовывает механическую энергию в кинетическую, а кинетическую – в тепловую. Таким образом, его можно отнести к приборам отопления или нагревателям воды.

    История этого аппарата начинается в начале ХХ века, когда ученый Жозеф Ранк обнаружил, что в воздушной вихревой струе происходит сепарация на фракции нагретого воздуха и холодного. Прибор для образования вихревого воздушного потока назвали трубой Ранке.

    Позже, в середине прошлого века, трубу Ранка модернизировал немецкий изобретатель Хилшем. Еще спустя некоторое время в модернизированную трубу Ранке советский ученый Меркулов запустил воду вместо воздуха. При этом он обнаружил, что на выходе вода сильно нагрелась.

    Схема устройства трубы Ранка

    Такое свойство связано с тем, что в воде, когда она проходит через вихревую трубу, образуется множество водяных пузырьков. В результате воздействия давления воды, эти пузырьки разрушаются. При этом высвобождается некоторое количество энергии, которая нагревает воду.

    Данный процесс называется кавитацией. Этот принцип и лег в основу всех современных тепловых генераторов.

    Виды тепловых генераторов

    В зависимости от типа устройства теплогенераторы делятся на несколько видов. Наиболее широкое распространение из них получили:

    • Роторный. Теплогенератор имеет ротор, который отвечает за образование вихревого потолка;

    Промышленный статический теплогенератор

    • Статический. Давление воды в таком приборе создает центробежный кавитационный насос. При этом водяной образуется за счет специальных кавитационных трубок.

    Каждый теплогенератор имеет свои достоинства и недостатки, с которыми мы ознакомимся ниже.

    Роторный

    Роторный теплогенератор может иметь различную конструкцию. Надо сказать, что данный аппарат по сей день находится в стадии разработки и усовершенствования.

    Роторный теплогенератор – основные узлы устройства

    Наиболее распространенным считается дисковый роторный теплогенератор. Такой аппарат состоит из нескольких основных элементов:

      Ротор. Выполнен в виде диска, отсюда и такое его название. Для наибольшей эффективности устройства, в роторе просверливаются отверстия.

    Количество отверстий и глубина рассчитываются индивидуально, в зависимости от мощности двигателя и объема корпуса. Скорость вращения ротора в корпусе достигает 3000 оборотов в минуту;

      Электродвигатель. Приводит в действие ротор. Так как для работы применяется электродвигатель, устройство еще называют теплоэлектрогенератором.

    Надо сказать, что в мощных аппаратах могут использоваться другие силовые агрегаты, к примеру, дизельные двигателя;

    На фото — корпус теплового генератора

    • Корпус. Представляет собой полый цилиндр. Расстояние между ротором и стенками корпуса также подбирается индивидуально, но, как правило, находится в пределах 1,5-2 мм.

    К нижней части корпуса подключается труба с холодной водой, а сверху труба, по которой выводится горячая вода.

    В результате вращения ротора происходит трение воды с корпусом и самим ротором, за счет чего и нагревается вода. Кроме того, помогают нагреву и разрушающиеся пузырьки воздуха, о которых я уже говорил выше.

    По сути, данный аппарат — это не что иное, как тепловой насос Френетта, принцип которого заключается в том, что один цилиндр вращается внутри другого, а между ними нагревается жидкость.

    Роторные тепловые генераторы обычно применяются для обогрева производственных помещений

    Достоинства:

      Простота конструкции. Как вы видите, устройство аппарата в целом достаточно простое. Поэтому можно даже сделать роторный теплогенератор своими руками.

    По сути, самостоятельно нужно изготовить или заказать лишь корпус ротора и сам ротор. Все остальные детали приобретаются в магазине;

    Чтобы не заниматься самостоятельно расчетами, что требует определенных знаний, можно взять готовые чертежи роторного теплового генератора.

    • Эффективность. Роторный теплогенератор выделяет на 30 процентов больше тепловой мощности, чем статический.

    Кроме того, он более экономичный, чем традиционные приборы отопления. Это, собственно, и является основным достоинством тепловых генераторов, ради которых их используют в бытовых и промышленных системах отопления.

    Минусов роторный теплогенератор имеет немного:

    • Шумность. Это доставляет определенный дискомфорт в процессе эксплуатации устройства;
    • Повышенный износ деталей. У такого аппарата быстро изнашиваются сальники и уплотнители.

    В результате этих недостаток теплоэлектрогенератор чаще применяют для обогрева производственных помещений, чем для жилых домов или квартир.

    Статический теплогенератор Потапова

    Статический

    Статический кавитационный теплогенератор, как я уже говорил выше, работает за счет центробежного насоса. Поэтому не имеет никаких вращающихся элементов, что дает ему свои преимущества, с которыми ознакомимся ниже.

    Принцип работы данного аппарата выглядит следующим образом:

    • Центробежный насос обеспечивает высокую скорость передвижения воды;
    • Вода устремляется во входное отверстие сопла;
    • Так как выходное отверстие сопла значительно меньше, чем входное, в нем образуется высокое давление воды. В результате вода еще больше ускоряется;
    • Из-за быстрого расширения воды, на выходе из сопла происходит кавитационный эффект с образованием газа внутри.

    Таким образом, нагрев жидкости в данном аппарате происходит в результате тех же процессов, которые происходят в и роторном тепловом генераторе – кавитации и трения жидкости.

    На схеме теплогенератор Потапова

    Читать еще:  Кондиционер два внутренних блока и один наружный

    Также пользуется популярностью теплогенератор Потапова, который работает несколько иначе:

    • Центробежный насос подает воду под давлением в так называемую улитку (на схеме 2);
    • В результате вращения внутри изогнутого канала вода начинает нагреваться;
    • Из улитки вода попадает в вихревую трубу (3), обладающую спиралью на стенках. Длина последней должна быть больше ширины в десятки раз.

    В вихревой трубе вода продолжает нагреваться;

      Далее расположено тормозное устройство (4). В нем струя немного выравнивается благодаря пластинам, которые закреплены на втулке. Внутри тормозного устройства расположено пустое пространство, которое соединено с нижним тормозом (7).

    Горячая вода поднимается вверх и выходит через выходной патрубок, к которому подключается система отопления, а холодная опускается вниз. При этом холодную воду нагревают пластины, которые в свою очередь нагреваются горячей водой;

  • Теплая вода спускается к нижнему тормозу и дополнительно подогревается благодаря кавитации;
  • Далее теплая вода через байпас (8) попадает в выходной патрубок, где смешивается с горячей водой.
  • Схема диагональной обвязки

    Чтобы использовать в системе отопления теплогенератор Потапова, необходимо выполнить диагональную обвязку батарей. В таком случае сверху будет подаваться горячий теплоноситель, а снизу будет выходить холодный, который подается на центробежный насос. В результате отопление будет работать наиболее эффективно.

    Достоинства:

    • Долговечность. Подобное устройство, как правило, работает без ремонта более 5 лет;
    • Простота ремонта. Чаще всего выходит из строя сопло. Выполнить его замену своими руками под силу каждому, кроме того, такой ремонт требует немного затрат;
    • Низкий уровень шума. Теплогенератор данного типа работает значительно тише, чем роторный аналог;
    • Не требуется балансировка. При сборке конструкции нет необходимости шлифовать, калибровать и точно подгонять детали;

    Статический теплогенератор имеет следующие недостатки:

    • Сравнительно невысокая производительность. Как я уже говорил выше, теплогенератор данного типа менее производительный, но в любом случае обогрев помещения получается менее энергозатратным, чем в случае использования традиционных приборов отопления;
    • Высокая стоимость насоса. Стоимость центробежного насоса достаточно высокая, правда, в целом себестоимость обоих аппаратов примерно одинаковая.

    Статический аппарат вполне может использоваться в бытовой отопительной системе.

    Теплогенератор отечественного производства ВТГ

    Стоимость

    Теплогенератор не обязательно делать самостоятельно. В продаже существуют уже готовые аппараты. Напоследок я приведу стоимость некоторых популярных моделей:

    Вихревой теплогенератор. Правда и вымысел.

    Вихревой теплогенератор состоит из двигателя и кавитатора. В кавитатор подается вода (или другая жидкость). Двигатель раскручивает механизм кавитатора, в котором происходит процесс кавитации (схлопывания пузырьков). За счет этого, происходит нагрев жидкости, подаваемой в кавитатор. Подводимая электроэнергия расходуется на следующие цели: 1- нагрев воды, 2 — преодоление силы трения в двигателе и кавитаторе, 3- излучение звуковых колебаний (шум). Разработчики и производители утверждают, что принцип действия основан » на использовании возобновляемой энергии». При этом, не понятно, откуда эта энергия берется. Тем не менее, не происходит никакого дополнительного излучения. Соответственно, можно предположить, что вся энергия, подводимая к теплогенератору, тратится на нагрев воды. Таким образом, можно говорить о КПД, близком к 100%. Но не более.
    Но перейдем от теории к практике.

    На заре развития «вихревых теплогенераторов» предпринимались попытки проведения независимой экспертизы. Так, известная модель ЮСМАР изобретателя Ю.С.Потапова из Молдовы тестировалась американской компанией Earth Tech International (г.Остин, штат Техас), специализирующейся на экспериментальной верификации новых направлений в современной физике. В 1995 г. были проведены пять серий экспериментов по измерению соотношения между генерируемой тепловой и потребляемой электрической энергией. Заметим, что все многочисленные модификации испытуемого устройства, предназначенные для разных серий экспериментов, лично согласовывались с Ю.С.Потаповым в ходе визита одного из сотрудников компании в Молдову. Подробнейшее описание конструкции испытуемого теплогенератора с вихревой трубой, режимные параметры, методики проведения измерений и результаты приводятся на сайте компании www.earthtech.org/experiments/.

    Для привода водяного насоса использовался электродвигатель с КПД=85%, тепловые потери которого на нагрев окружающего воздуха не принимались при расчете теплопроизводительности «вихревого теплогенератора». Отметим, что не измерялись и тепловые потери на нагрев окружающего воздуха, что, безусловно, несколько снижало получаемый КПД теплогенератора.

    Результаты исследований, проведенных при варьировании основных режимных параметров (давление, расход теплоносителя, начальная температура воды и др.) в широком диапазоне продемонстрировали, что эффективность теплогенератора изменяется в диапазоне от 33 до 81%, что сильно не «дотягивает» до 300%, заявленных изобретателем перед проведением экспериментов.

    Хотя по «тепловому вихрегенератору» расскажу.
    Были некоторые примеры значительной экономии денежных средств на отопление в переходные периоды нашей экономики, когда деньги предприятий начинали считать. Сразу скажу, что с связано это с гримасами экономики, а совсем не с теплотехникой.

    Скажем, некоторое предприятие желает отапливать свои помещения. Ну холодно им видите ли.
    По некоторым причинам, ясно каким, не может вложиться в Газовую трубу, строить свою котельную на угле, мазуте — не хватает масштабов, а центральное отопление отсутствует или далеко.
    Остается электричество, но при получении разрешения на использование электроэнергии в термальных целях устанавливали предприятию тариф, превышающий в несколько раз обычный.
    Такие были раньше правила, и не только в России, но в Украине, Молдове и др. государствах, которые отпочковались от нас.
    Вот тут приходил на помощь г-н Потапов и подобные.
    Покупали чудо-устройство, тариф на электроэнергию для электродвигателей оставался обычный, тепловой КПД естественно никак больше сотни быть не мог, а вот в денежном отношении КПД был и 200 и 300, смотря во сколько раз сэкономили на тарифе.
    Применяя ТН можно было достичь еще большей экономии, но для тех времен и вихретеплогенератора с эффективностью якобы 1,2-1,5 вполне было достаточно.
    Ведь еще больший заявляемый КПД мог только повредить и отпугнуть покупателей, ведь квоты на электроснабжение выделялись по потребляемой мощности, а давал генератор тепла столько-же, если не меньше, в связи с потерями по cos Ф.
    По теплопотерям помещений в 30-40% погрешности еще как-то можно было уложиться, списать на колебания погоды.
    Сейчас это ушло в прошлое, но тема вихрегенераторов по инерции продолжает всплывать, и ведь находятся дураки, которые покупают, клюнув на информацию с фотками и адресами, что ряд уважаемых предприятий в свое время использовали их у себя и экономили большую кучу денег.
    Только всей подоплеки им никто не рассказывает.

    Читать еще:  Срок службы утеплителей какой утеплитель предпочесть

    Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении

    Вот такой, казалось бы, простой прибор позволит позабыть о привычном дорогостоящем отоплении

    Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов — это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.

    Немного истории

    Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

    Труба Ранка, проникая в которую газообразная среда делится на горячий и холодный воздух — это явление было открыто в начале двадцатого века, а применяется на практике сегодня

    Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

    Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

    Показанный на схеме принцип работы вихревой трубы несложен — поток проходит через камеру закрутки, где разбивается на два потока с разной температурой

    Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

    За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

    К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

    На фото показан демонстрационный вихревой генератор, в котором вода циркулирует в замкнутом контуре

    Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

    Принцип действия

    Так выглядит рабочий генератор Потапова — поток воды из патрубка очень горячий

    Традиционно считалось, что кавитация — это паразитное явление, характеризующееся интенсивным образованием пузырьков, которые, во время схлопывания, провоцируют разрушение окружающих предметов.

    Характерный пример последствий кавитации — разрушение корабельных винтов или разрушение крыльчатки лопастных насосов. Теплогенератор вихревого типа — это прибор, в котором паразитное явление приносит пользу.

    На фото еще один теплогенератор Потапова, в ходе испытательных работ подключённый к отопительному радиатору

    Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

    Несмотря на то, что кавитация — это паразитное явление, конструкционные элементы современных теплогенераторов, в отличии от тех же корабельных винтов, не страдают. Это объясняется тем, что кавитационные процессы протекают не вокруг дискового активатора, а за ним.

    Принцип действия кавитационного преобразователя

    1. В преобразователь трубного типа подается основной поток жидкой среды обычной температуры;
    2. Навстречу движению основного потока подаются дополнительные потоки жидкой среды;
    3. Разнонаправленные потоки, сталкиваясь, создают эффект кавитации, за счет чего жидкая среда на выходе из преобразователя нагревается.

    Устройство и особенности функционирования

    Так выглядит стационарная кавитационная установка, подключённая к промышленной системе отопления

    Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

    «Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

    Дисковый активатор, одетый на вал — это приспособление отвечает за движение водной среды и за создание кавитационного эффекта

    В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

    • Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
    • Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
    • Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.
    Ссылка на основную публикацию
    Adblock
    detector