0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет теплопотерь через ограждающие конструкции

Расчет теплопотерь помещения и требуемого сопротивления теплопередаче наружных ограждающих конструкций при раздельном учете лучистого и конвективного теплообмена

Ю. А. Табунщиков, президент НП «АВОК»

Проведенные исследования показывают, что традиционные расчеты теплопотерь помещения и требуемого сопротивления теплопередаче наружных ограждающих конструкций без раздельного учета лучистого и конвективного теплообмена в помещениях, содержащиеся в существующих нормативных и методических документах, приводят к достаточно значительным расхождениям в расчетах.

В проектной практике довольно часто встречается задача по определению теплопотерь помещения и расчета требуемого сопротивления теплопередаче наружных ограждающих конструкций, в котором одна или несколько поверхностей имеют существенно различные температуры. К таким поверхностям можно отнести угловые помещения с двумя наружными стенами, помещения верхнего этажа с двумя наружными стенами и покрытием, помещения плавательного бассейна и помещения с обогреваемым полом, в которых температура поверхности воды или поверхности пола существенно отличается от температуры внутренних поверхностей наружных ограждений.

Тепловой поток на внутренней поверхности наружной ограждающей конструкции следует рассчитывать по формуле [1, 2], учитывающей конвективную и лучистую составляющие этого теплового потока:

(1)

где a к – коэффициент конвективного теплообмена между внутренней поверхностью наружной ограждающей конструкции и воздухом помещения, Вт/м 2 •°С;

a л – коэффициент лучистого теплообмена между внутренней поверхностью наружной ограждающей конструкции и окружающими поверхностями, Вт/м 2 •°С;

tв, tвп – соответственно температуры внутреннего воздуха и внутренней поверхности наружной ограждающей конструкции, °С;

tокр – температура окружающих поверхностей, °С, вычисляется по формуле:

(2)

где ti, Fi – соответственно температуры, °С, и площади, м 2 , окружающих поверхностей.

Формулу (1) перепишем следующим образом:

(3)

Рассматривая правую часть формулы (3), можно сделать следующие выводы:

1. Если tусл > tв, то теплопотери помещения будут превышать значение, рассчитанное согласно СНиП II-33-75* «Отопление, вентиляция, кондиционирование воздуха», без раздельного учета лучистой и конвективной составляющих теплообмена на внутренней поверхности наружных ограждений.

2. Если tусл 2 •°С/Вт; Rокн – приведенное сопротивление теплопередаче окна, м 2 •°С/Вт; q1ст – тепловой поток через наружную стену при раздельном учете лучистого и конвективного теплообмена, Вт; q1окн – тепловой поток через окно при раздельном учете лучистого и конвективного теплообмена, Вт; q2ст – тепловой поток через наружную стену без раздельного учета лучистого и конвективного теплообмена, Вт; q2окн – тепловой поток через окно без раздельного учета лучистого и конвективного теплообмена, Вт.

Далее рассмотрим влияние раздельного учета лучистого и конвективного теплообмена при расчете сопротивления теплопередаче наружных ограждающих конструкций.

Рассматривалось три типа помещений с системой воздушного отопления, имеющих соответственно одно, два и три наружных ограждения: рядовое – с одной наружной стеной, угловое – с двумя наружными стенами, верхнее угловое – с двумя наружными стенами и покрытием; в каждом из помещений имелось окно (рис. 1).

Схема исследуемого помещения

В процессе расчета варьировались температура наружного воздуха tн от –15 до –25 °С; геометрические параметры помещения: отношение ширины к высоте В/Н – от 1 до 2,5, отношение длины к высоте L/Н – от 1 до 2,5; относительная площадь остекления наружной стены fост. = Fок / BH – от 0,3 до 0,7 (Fок – площадь окна); приведенный относительный коэффициент излучения между окном и светонепроницаемыми ограждениями e ок пр / e ок пр1 = 0,84; e ок пр2 = 0,28.

При анализе полученных результатов выявлено, что соотношения геометрических размеров В/Н и L/Н практически не влияют на исследуемые параметры, поэтому при дальнейшем рассмотрении они не учитываются.

При tв = 18 °С и ∆tн = 6 °С температура внутренней поверхности наружного ограждения составляет t ст =12 °С, температура внутренней поверхности покрытия при tв = 18 °С и ∆tн = 4 °С – t пот = 14 °С. Расчетные значения t отличаются от нормативных и в большой степени зависят от типа помещения: в помещении с одним наружным ограждением t ст = 10–10,5 °С, с двумя – t ст = 9,2–9,6 °С, в помещении с двумя наружными стенами и покрытием t ст = 8,7–9,0 °С, t пот = 10,4–11,2 °С.

Естественно, что теплопотери помещения, рассчитанные с учетом конвективной и лучистой составляющих теплообмена, оказались меньше теплопотерь, определенных по СНиП 2.04.05-91*. При увеличении перепада между tв и tвп возросла конвективная составляющая теплообмена, однако лучистая составляющая существенно уменьшилась. Это объясняется тем, что температуры внутренних ограждений не равны температуре воздуха (для различных типов помещения tокр = 12,5 – 15,5 °С) и, кроме того, для помещений с несколькими наружными ограждениями в расчет включались их внутренние поверхности. На рис. 2 показано распределение температуры поверхностей помещений, рассчитанное в соответствии с нормами и при раздельном учете лучистого и конвективного теплообмена, учитывающего разности температур четвертых степеней [3]. Стрелками обозначено направление лучистых потоков. Как видно из рисунка, в реальных условиях происходит перераспределение этих потоков и поверхность потолка может даже отдавать лучистое тепло в помещение.

Читать еще:  Газовая колонка беретта не зажигается что делать

Распределение температуры поверхностей в помещении, рассчитанное:
а – по СНиП 2.04.05–91*; б – по формулам [2] при В/Н = 1,0; L/Н = 1,5; fост = 0,7; e ок пр = 0,84

Расчетом установлено, что при уменьшении e ок пр с 0,84 до 0,28 температура внутренней поверхности окна снижается на 2–3 °С из-за резкого уменьшения (на 55–60 %) лучистого теплообмена с другими поверхностями помещения, которое не компенсируется увеличением (на 20–30 %) конвективного теплообмена. Вследствие этого снижаются и теплопотери помещения.

В помещениях с наружными ограждающими конструкциями, рассчитанными по СНиП 23-02-2003 (где коэффициент теплоотдачи внутренней поверхности принят постоянным), не обеспечивается нормативный санитарно-гигиенический перепад между температурами воздуха и внутренней поверхности наружной стены. Превышение расчетного перепада над нормативным составляет для рядового помещения 25–30 %, углового – 40–45 %, верхнего углового – 50–55 %.

В заключение отметим, что особенно важно раздельно учитывать лучистый и конвективный теплообмен в помещении при определении нагрузки на систему кондиционирования воздуха. Если расчет проводится без такого учета, то полученное значение нагрузки на систему кондиционирования может превышать требуемое в 2–2,5 раза. Рекомендуется производить расчеты в соответствии с рекомендациями АВОК Р НП «АВОК» 5.1-2008 по программе, которая учитывает раздельно лучистый и конвективный теплообмен в помещении.

Литература

1. Богословский В. Н. Строительная теплотехника. – М. : Высшая школа, 1982.

2. Табунщиков Ю. А. Математическое моделирование и оптимизация тепловой эффективности зданий. – М. : АВОК-ПРЕСС, 2002.

3. Табунщиков Ю. А., Климовицкий М. С. Расчет теплового режима помещения при раздельном учете конвективной и лучистой составляющих теплообмена / Сборник трудов НИИСФ «Тепловой режим и долговечность зданий», 1987.

Руководство по расчету теплопотребления эксплуатируемых жилых зданий

Простой расчет теплопотерь зданий.

Ниже приведен довольно простой расчет теплопотерь зданий, который, тем не менее, поможет достаточно точно определить мощность, требуемую для отопления Вашего склада, торгового центра или другого аналогичного здания. Это даст возможность еще на стадии проектирования предварительно оценить стоимость отопительного оборудования и последующие затраты на отопление, и при необходимости скорректировать проект.

Куда уходит тепло? Тепло уходит через стены, пол, кровлю и окна. Кроме того тепло теряется при вентиляции помещений. Для вычисление теплопотерь через ограждающие конструкции используют формулу:

Q – теплопотери, Вт

S – площадь конструкции, м2

T – разница температур между внутренним и наружным воздухом, °C

R – значение теплового сопротивления конструкции, м2•°C/Вт

Схема расчета такая – рассчитываем теплопотери отдельных элементов, суммируем и добавляем потери тепла при вентиляции. Все.

Предположим мы хотим рассчитать потери тепла для объекта, изображенного на рисунке. Высота здания 5…6 м, ширина – 20 м, длинна – 40м, и тридцать окон размеров 1,5 х 1,4 метра. Температура в помещении 20 °С, внешняя температура -20 °С.

Считаем площади ограждающих конструкций:

пол: 20 м * 40 м = 800 м2

кровля: 20,2 м * 40 м = 808 м2

окна: 1,5 м * 1,4 м * 30 шт = 63 м2

стены: (20 м + 40 м + 20 м + 40м) * 5 м = 600 м2 + 20 м2 (учет скатной кровли) = 620 м2 – 63 м2 (окна) = 557 м2

Теперь посмотрим тепловое сопротивление используемых материалов.

Значение теплового сопротивления можно взять из таблицы тепловых сопротивлений или вычислить исходя из значения коэффициента теплопроводности по формуле:

R – тепловое сопротивление, (м2*К)/Вт

? – коэффициент теплопроводности материала, Вт/(м2*К)

d – толщина материала, м

Значение коэффициентов теплопроводности для разных материалов можно посмотреть здесь.

пол: бетонная стяжка 10 см и минеральная вата плотностью 150 кг/м3. толщиной 10 см.

R (бетон) = 0.1 / 1,75 = 0,057 (м2*К)/Вт

R (минвата) = 0.1 / 0,037 = 2,7 (м2*К)/Вт

R (пола) = R (бетон) + R (минвата) = 0,057 + 2,7 = 2,76 (м2*К)/Вт

кровля: кровельные сэндвич панели из минеральной ваты толщиной 15 см

R (кровля) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

окна: значение теплового сопротивления окон зависит от вида используемого стеклопакета
R (окна) = 0,40 (м2*К)/Вт для однокамерного стекловакета 4–16–4 при ?T = 40 °С

стены: стеновые сэндвич панели из минеральной ваты толщиной 15 см
R (стены) = 0.15 / 0,037 = 4,05 (м2*К)/Вт

Посчитаем тепловые потери:

Q (пол) = 800 м2 * 20 °С / 2,76 (м2*К)/Вт = 5797 Вт = 5,8 кВт

Q (кровля) = 808 м2 * 40 °С / 4,05 (м2*К)/Вт = 7980 Вт = 8,0 кВт

Q (окна) = 63 м2 * 40 °С / 0,40 (м2*К)/Вт = 6300 Вт = 6,3 кВт

Q (стены) = 557 м2 * 40 °С / 4,05 (м2*К)/Вт = 5500 Вт = 5,5 кВт

Получаем, что суммарные теплопотери через ограждающие конструкции составят:

Q (общая) = 5,8 + 8,0 + 6,3 + 5,5 = 25,6 кВт / ч

Читать еще:  Как утеплить плинтуса в квартире
Теперь о потерях на вентиляцию.

Для нагрева 1 м3 воздуха с температуры – 20 °С до + 20 °С потребуется 15,5 Вт.

Q(1 м3 воздуха) = 1,4 * 1,0 * 40 / 3,6 = 15,5 Вт, здесь 1,4 – плотность воздуха (кг/м3), 1,0 – удельная теплоёмкость воздуха (кДж/(кг К)), 3,6 – коэффициент перевода в ватты.

Осталось определиться с количеством необходимого воздуха. Считается, что при нормальном дыхании человеку нужно 7 м3 воздуха в час. Если Вы используете здание как склад и на нем работают 40 человек, то вам нужно нагревать 7 м3 * 40 чел = 280 м3 воздуха в час, на это потребуется 280 м3 * 15,5 Вт = 4340 Вт = 4,3 кВт. А если у Вас будет супермаркет и в среднем на территории находится 400 человек, то нагрев воздуха потребует 43 кВт.

Итоговый результат:

Для отопления предложенного здания необходима система отопления порядка 30 кВт/ч, и система вентиляции производительностью 3000 м3 /ч с нагревателем мощность 45 кВт/ч.

Определение теплопотерь через ограждения помещений

Тепловая мощность системы отопления определяется суммой тепловых потерь через наружные ограждения всех отапливаемых помещений здания. При расчете теплопотерь через наружные ограждения пользуются значениями сопротивлений теплопередаче ограждающих конструкций, определенных ранее.

Суммарные потери теплоты помещений Q, учитываемые при проектировании систем отопления, условно подразделяются на основные и добавочные:

Теплотеряющими ограждениями считаются такие, которые граничат:

· с наружным воздухом (стены, окна, входные и балконные окна, бесчердачные покрытия);

· с неотапливаемыми помещениями (чердачные перекрытия, а также перекрытия над подвалом и подпольями);

· с помещениями, имеющими температуру внутреннего воздуха на 3°С и ниже, чем в рассчитываемом помещении.

Линейные размеры ограждающих конструкций следует определять с точностью до 0,1 м следующим образом:

а) окна и двери — по наименьшим строительным размерам проема в свету;

б) потолки и полы — между осями внутренних стен от внутренней поверхности

наружных стен до осей внутренних стен;

в) высота стен первого этажа — от уровня нижней поверхности конструкции перекрытия (при неотапливаемом подвале и холодном подполье)-, от отметки чистого пола (при отапливаемом подвале и устройстве пола непосредственно на грунте)-, от отметки уровня подготовки или основания (при устройстве полов на лагах) — до уровня чистого пола вышележащего этажа; высота соответствующих стен для одноэтажного здания — от указанных выше отметок до отметки смазки чердачного перекрытия или до отметки верхнего слоя гидроизоляции наружного перекрытия;

г) длину наружных стен — неугловых помещений: между осями внутренних стен, угловых помещений: от внешней поверхности наружной стены до оси внутренней.

Площади наружных ограждающих конструкций необходимо определить с точностью до 0,1 м 2 . При вычислении площади наружных стен, необходимо учитывать наличие в них наружных входных дверей — из общей площади стены следует вычесть площадь входных дверей нс. – Авх.дв.). Однако из площади стен не вычитать площади окон и балконных дверей. Удобнее в расчетах уменьшить величину коэффициента теплопередачи стены (kо -kнс). При этом итоговый результат (сумма потерь тепла наружными стенами и окнами с балконными дверьми) не изменится [4].

Основные и добавочные потери теплоты следует определять через отдельные ограждающие конструкции Q, Вт, с округлением до 10 Вт для помещений по формуле [10, прил. 9]:

где А — расчетная площадь ограждающей конструкции, м 2 ;

tint — расчетная температура воздуха, °С, в помещении, с учетом повышения ее в зави симости от высоты помещения более 4 м;

t ext — расчетная температура наружного воздуха для холодного периода года при расчете потерь теплоты через наружные ограждения или температура воздуха более холодного помещения — при расчете потерь теплоты через внутренние ограждения;

β — добавочные потери теплоты через ограждающие конструкции;

Rо.пр. – общее термическое сопротивление теплопередаче ограждающей конструкции, (м 2 ×°С)/Вт.

Сопротивление теплопередаче конструкции следует определять по формуле (23) (кроме полов на грунте).

Для расчета сопротивления теплопередаче конструкций, расположенных на грунте, применяют упрощенную методику. Поверхность пола и стен (при этом пол рассмат­ривается как продолжение стены) по грунту делится на полосы шириной 2_м, парал­лельные стыку наружной стены и поверхности земли. Отсчет зон начинается по стене от уровня земли, а если стен по грунту нет, то зоной I является полоса пола, ближай­шая к наружной стене. Следующие две полосы будут иметь номера II и III, а остальная часть пола составит зону IV. Причем одна зона может начинаться на стене, а про­должаться на полу (рис. 1).

Расчет теплопотерь через ограждающие конструкции. Теплопотери через ограждающие конструкции

ГЛАВА 3. ТЕПЛОВОЙ БАЛАНС ПОМЕЩЕНИЙ И ТЕПЛОЗАТРАТЫ НА ОТОПЛЕНИЕ ЗДАНИЙ

Читать еще:  Уют и тепло моего дома

Расчетная мощность систем отопления

Тепловой режим может быть постоянным и переменным.

Постоянный — поддерживается круглосуточно в жилых, производственных с непрерывным режимом работы зданиях, детских и лечебных учреждениях, гостиницах, санаториях.

Переменный — в производственных зданиях с одно- и двухсменной работой, административных, торговых, учебных зданиях, предприятиях обслуживания. В нерабочее время используют имеющуюся систему отопления, или дежурное отопление — пониженная температура.

Тепловой баланс сводят в формуляр (табл. 3.1).

Таблица 3.1. Формуляр (бланк) теплового баланса

Если теплопотери больше тепловыделений, то требуется отопление.

Расчетная тепловая мощность системы отопления :

Q с,о = ∑Q пот — ∑Q пост, (3.1)

Если в производственном здании ∑Q пост >∑Q пот , то устраивается приточной вентиляции.

Теплопотери через ограждающие конструкции

Для определения теплопотери необходимо иметь:

Планы этажей со всеми строительными размерами;

Выкопировку из генплана с обозначением стран света и розы ветров;

Назначение каждого помещения;

Географическое место постройки здания;

Конструкции всех наружных ограждений.

Все помещения на планах обозначают:

Нумеруют слева направо, лестничные клетки обозначают буквами или римскими цифрами независимо от этажа и рассматривают как одно помещение.

Потери теплоты помещениями через ограждающие конструкции , с округлением до 10 Вт:

Q огр = (F/R о)(t в – t н Б)(1 + ∑β)n = kF(t в – t н Б)(1 — ∑β)n, (3.2)

где F , k , R o — расчетная площадь, коэффициент теплопередачи, сопротивление теплопередаче ограждающей конструкции, м 2 , Вт/(м 2 · оС), (м 2 · оС)/Вт; t в — расчетная температура воздуха помещения, о С; t н Б — расчетная температура наружного воздуха (Б) или температура воздуха более холодного помещения; п — коэффициент, учитывающий положение наружной поверхности ограждающих конструкций по отношению к наружному воздуху (табл. 2.4); β — добавочные потери теплоты в долях от основных потерь.

Теплообмен через ограждения между смежными отапливаемыми помещениями учитывается, если разность температур в них более 3°С.

Площади F , м 2 , ограждений (наружных стен (НС), окон (О), дверей (Д), фонарей (Ф), потолка (Пт), пола (П)) измеряются по планам и разрезам здания (рис. 3.1).

1. Высота стен первого этажа: если пол находится на грунте, — между уровнями полов первого и второго этажей (h 1 ); если пол на лагах — от наружного уровня подготовки пола на лагах до уровня пола второго этажа (h 1 1 ); при неотапливаемом подвале или подполье — от уровня нижней поверхности конструкции пола первого этажа до уровня чистого пола второго этажа (h 1 11 ), а в одноэтажных зданиях с чердачным перекрытием высота измеряется от пола до верха утепляющего слоя перекрытия.

2. Высота стен промежуточного этажа — между уровнями чистых полов данного и вышележащего этажей (h 2 ), а верхнего этажа — от уровня его чистого пола до верха утепляющего слоя чердачного перекрытия (h 3 ) или бесчердачного покрытия.

3. Длина наружных стен в угловых помещениях — от кромки наружного угла до осей внутренних стен (l 1 и l 2 l 3 ).

4. Длина внутренних стен — от внутренних поверхностей наружных стен до осей внутренних стен (m 1 ) или между осями внутренних стен (т).

5. Площади окон, дверей и фонарей — по наименьшим размерам строительных проемов в свету (а и b ).

6. Площади потолков и полов над подвалами и подпольями в угловых помещениях — от внутренней поверхности наружных стен до осей противоположных стен (m 1 и п ), а в неугловых — между осями внутренних стен (т ) и от внутренней поверхности наружной стены до оси противоположной стены (п ).

Погрешность линейных размеров — ±0,1 м, площади — ±0,1 м 2 .

Рис. 3.1. Схема обмера теплопередающих ограждений

Рис 3.2. Схема к определению потерь теплоты через полы и стены, заглубленные ниже уровня земли

1 — первая зона; 2 – вторая зона; 3 – третья зона; 4 – четвертая зона (последняя).

Потери теплоты через полы определяют по зонам-полосам шириной 2 м, параллельным наружным стенам (рис. 5.2).

Приведенное сопротивление теплопередаче R н.п, м 2 ·К/Вт, зон неутепленных полов на грунте и стен ниже уровня земли, с теплопроводностью λ > 1,2 Вт/(м· о С): для 1-й зоны — 2,1; для 2-й зоны — 4,3; для 3-й зоны — 8,6; для 4-й зоны (оставшейся площади пола) — 14,2.

Формула (3.2) при подсчете потерь теплоты Q пл , Вт, через пол, расположенный на грунте, принимает вид:

Q пл = (F 1 / R 1н.п +F 2 / R 2н.п +F 3 / R 3н.п +F 4 / R 4н.п)(t в – t н Б)(1 + ∑β)n, (3.3)

где F 1 — F 4 — площади 1 — 4 зон-полос, м 2 ; R 1,н.п — R 4,н.п — сопротивление теплопередаче зон пола, м 2 ·К/Вт; n =1.

Сопротивление теплопередаче утепленных полов на грунте и стен ниже уровня земли (λ

Ссылка на основную публикацию
Adblock
detector