1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Из чего состоит регулятор давления газа

Астатические и статические регуляторы давления газовых сетей — виды регуляторов, устройство, сравнительная характеристика, расчет пропускной способности, методика подбора.

Управление гидравлическим режимом работы системы газоснабжения осуществляют с помощью регуляторов давления, которые автоматически поддерживают постоянное давление в точке отбора импульса независимо от интенсивности потребления газа. При регулировании давления происходит снижение начального, более высокого давления, на конечное (более низкое).

Автоматический регулятор давления состоит из регулирующего и реагирующего устройств. Основной частью реагирующего устройства является чувствительный элемент (мембрана), а основной частью регулирующего устройства — регулирующий орган (у регуляторов давления дроссельный орган). Чувствительный элемент и регулирующий орган соединяются между собой исполнительной связью. На рис. 7.1 показаны схемы регулятора давления и условно газовая сеть, которая является объектом регулирования. Давление до регулятора обозначено через р1 давление после регулятора — через р2. Регулятор типа «после себя», поэтому давление р2 является регулируемым параметром.

Рис. 7.1. Схема регулятора давления

1 — регулирующий (дроссельный) орган; 2 — мембранно-грузовой привод; 3 — импульсная трубка; 4 — объект регулирования — газовая сеть

Рис. 7.2. График астатического .регулирования при отсутствии самовыравнивания

Если процесс регулирования представляет собой периодический незатухающий процесс, то регуляторы, работающие по этому принципу, называются астатическими. Эти регуляторы после возмущения приводят регулируемое давление к заданному значению независимо от величины нагрузки и положения регулирующего органа. Таким образом, равновесие системы при астатическом регулировании может наступить только при заданном значении регулируемого параметра, причем регулирующий орган может занимать любое положение. Если объект обладает свойством самовыравнивания, то процесс регулирования будет затухающим, а регулирование устойчивым.

Под самовыравниванием понимают такое свойство объекта, при котором после нарушения равновесия объект способен сам восстановить равновесие между притоком и стоком, но при другом значении регулируемого параметра. В качестве объекта, обладающего самовыравниванием, можно привести газовые сети низкого давления. Действительно, если увеличить отбор газа из этих сетей (включить новых потребителей), то давление газа уменьшится, вследствие чего сток сократится, а равновесие установится только при другом, более низком давлении газа.

Зона нечувствительности, люфты, трение в сочленениях и другие конструктивные недостатки регуляторов могут привести к тому, что колебательный процесс регулирования станет расходящимся, а регулирование— неустойчивым. Для стабилизации процесса (т. е. превращения его в затухающий) в регулятор вводят стабилизирующие устройства, в частности жесткую обратную связь. Такое регулирование называют статическим.

Регуляторы этого типа характеризуются тем, что значение регулируемого давления при равновесии системы зависит не только от задания (настройки регулятора), но и от нагрузки или от положения регулирующего органа. Каждому значению регулируемого параметра соответствует одно определенное положение регулирующего органа. При статическом регулировании равновесное значение регулируемого давления всегда отличается от заданной величины, и только при номинальной нагруз ке фактическое давление становится равным номинальному значению. Таким образом, статические регуляторы характеризуются неравномерностью, под которой понимают величину изменения регулируемого параметра, необходимую для перестановки регулирующего органа из одного крайнего положения в другое.

Рис. 7.3. Статический регулятор давления

1—регулирующий (дроссельный) орган; 2 — мембранно-пружннный привод; 3 — импульсная трубка; 4 — объект регулирования — газовая сеть

Рис. 7.4. График статического регулирования при отсутствии самовыравнивания

а — график регулирования; б — статическая ха. рактеристика регулятора

Регуляторы давления бывают прямого и непрямого действия, а также промежуточного типа. У регуляторов прямого действия регулирующий орган (клапан) перемещается усилием, возникающим в его чувствительном элементе (мембране) без использования энергии от постороннего источника. У таких регуляторов силовой элемент привода является одновременно и чувствительным элементом. Регуляторы прямого действия не имеют усилителей. Они просты по конструкции, надежны в работе и нашли широкое применение в системах газоснабжения.

У регуляторов непрямого действия усилие, возникающее в чувствительном элементе, приводит в действие управляющий элемент, который открывает доступ энергии постороннего источника (сжатого воздуха, газа и др.) в сервомотор, а последний развивает усилие, необходимое для перемещения регулирующего органа. Регуляторы этого типа всегда содержат один или несколько усилителей.

Регуляторы промежуточного типа имеют усилители, но для перестановки регулирующего органа используют энергию регулируемой среды. Если давление газа регулируется после регулятора, то регулятор называется «после себя»; если регулируется давление до регулятора, то регулятор называется «до себя». Для регулирования давления газа в городских системах газоснабжения применяют регуляторы «после себя».

Обычно при расчете пропускной способности регулирующего клапана проводят аналогию между движением газа через него и истечением из отверстия. Эта аналогия весьма приближенная по следующим причинам. Во-первых, многие клапаны выпускают с площадью прохода в седле, равной площади присоединительного патрубка. Во-вторых, при истечений из отверстия газ попадает в неограниченный объем, а при движении — через регулирующий дроссельный орган в трубопровод. В связи с этим в результате стабилизации потока давление в трубопроводе возрастет. Наконец, несмотря на то, что основной перепад давления, а следовательно, и основное гидравлическое сопротивление регулятора приходятся на регулирующий орган, определенная часть давления теряется в корпусе и при полностью открытом клапане может составлять значительную долю общего перепада давления.

Читать еще:  Утепление колодца на зиму своими руками

Указанные отклонения действительного движения газа через дроссельный орган от истечения из отверстия компенсируются экспериментальным коэффициентом, вводимым в расчетную зависимость. В этом случае точность расчета будет зависеть от того, насколько удачно выбран метод корректировки расчета, основанный на эксперименте. Вместе с тем расчет регулирующего клапана по формуле истечения позволяет исходя из теоретических соображений приближенно определить коэффициент, учитывающий расширение газа.

При малых перепадах давления на регуляторах пренебрегают сжимаемостью газа. Если р/p1>0,08, то ошибка не будет превышать 2,5%. При p/p1>0,08 следует учитывать сжимаемость газа, где р — перепад давлений на регуляторе, a p1—давление газа до регулятора.

Определим пропускную способность регулятора с помощью коэффициента гидравлического сопротивления по известной формуле

где W — скорость движения газа в присоединительном патрубке; р — плотность газа.

Регуляторы давления газа

  • Обратная связь
  • Запрос цены
  • Проектировщикам
  • РДП-50Н(В)
    • Обратная связь
    • Запрос цены
    • Проектировщикам
  • Регуляторы Venio-А

    В функции регуляторов входит поддерживание постоянного давления газа в заданных пределах за счет изменения расхода газа, протекающего через регулирующий клапан.

    По принципу действия регуляторы давления разделяются на две группы:

    • регуляторы непосредственного действия* (прямого);
    • регуляторы непрямого действия*.

    *могут быть прерывного и непрерывного действия.

    В регуляторах непосредственного действия регулирующий элемент находится под действием регулируемого параметра либо прямо, либо через зависимый параметр. В случае изменения регулируемого параметра этот элемент приводится в действие усилием, возникающим в чувствительном элементе регулятора, достаточным для перестановки регулирующего элемента без какого-либо постороннего источника энергии.

    В регуляторах непрямого действия (автоматический регулятор) чувствительный элемент воздействует на регулирующий компонент посредством постороннего самостоятельного источника энергии, в качестве которого могут выступать воздух, газ, жидкость и т. п. При изменении величины регулируемого параметра усилие, которое возникает в чувствительном элементе регулятора, приводит в действие вспомогательное устройство.

    Оба вида регуляторов состоят из регулирующего клапана, чувствительного (измерительного) и управляющего элементов.

    В регуляторах непосредственного действия чувствительный и управляющий элементы неотделимы от него и являются составными частями привода регулирующего клапана. У регулятора прямого действия чувствительный и управляющий элементы являются самостоятельными приборами, отделенными от регулирующего клапана.

    Регуляторы давления непосредственного (прямого) действия. Регулятор является дроссельным устройством, приводимым в действие мембраной, находящейся под воздействием регулируемого давления. Любое изменение давления газа может вызвать перемещение мембраны, и последующее изменение проходного сечения дроссельного устройства, что вызывает уменьшение или увеличение расхода газа, проходящего через регулятор. Таким образом, регулятор обеспечивает постоянное давление на заданном уровне.

    Регуляторы разделяются в зависимости от типа и формы дроссельных устройств, вида мембран (плоские и манжетные), способов сочленения мембран с клапанами, вида нагрузки для уравновешивания давления газа на мембрану. Выпускаются регуляторы давления непосредственного действия, у которых передача импульса давления — расхода на мембрану идет через трубу, соединенную с газопроводом, подводящим газ к регулятору (регуляторы «до себя»), и регуляторы «после себя», где импульс передается на мембрану через трубку, соединенную с газопроводом после регулятора.

    В зависимости от типа клапанов выделяются односедельные, двухседельные регуляторы и регуляторы с мягкими и твердыми седлами.

    В зависимости от рода нагрузки на мембрану различают три типа регуляторов:

    • с весовой нагрузкой,
    • с пружинной нагрузкой;
    • с нагрузкой, создаваемой давлением газа.

    Регуляторы выбирают по следующим показателям:

    • максимальный и минимальный расход газа;
    • колебание расхода газа в течение суток;
    • давление газа на входе и допустимых колебаний на выходе;
    • состав газа;
    • место установки регулятора.

    Газовые бустеры

    В отличие от задачи понижения давления транспортируемого газа и поддержания его на определенном уровне, решаемой с помощью регуляторов давления газа, необходимость повышать давление перед газоиспользующим оборудованием бывает крайне редко. Это связано как с самой архитектурой российских газораспределительных сетей, так и с обычно существующей возможностью поднимать давление с помощью настройки регулятора. Тем не менее, оборудование для повышения давления существует и при наличии определенных специфических технических условий может быть востребовано. Русского названия подобных устройств нет, на английском они называются «Gas Boosters», в интернете встречается кириллическое название «Газовые бустеры». Возможны два варианта технического решения повышения давления. В первом варианте производится установка многоступенчатого компрессора с баком-ресивером высокого давления и газорегулирующим оборудованием после ресивера. Это достаточно дорогое решение, которое используется в случаях, когда нужно компенсировать излишнее «пиковое» потребление газа при определенных технологических процессах, требующих краткосрочного большого расхода. Его эффективность в основном зависит от объема ресивера и давления в нем. Типового решения подобных схем не существует, необходимо делать индивидуальный расчет и проект. Второй вариант — для случаев, когда давления перед газоиспользующим (чаще всего импортным котельным) оборудованием недостаточно и его необходимо увеличить, либо когда имеется газопровод низкого давления большой протяженности, и при запуске горелок регулятор не успевает открыться. Давление при этом падает ниже порога отключения, срабатывает автоматика, и горелка отключается. В этом случае возможна установка маломощного компрессора, незначительно повышающего давление после себя. Нужно помнить, что в результате работы бустеров в разветвленных сетях возможно некоторое падение газа у подключеных к подводящему газопроводу потребителей. Устанавливать бустеры необходимо параллельно, не менее двух, с целью обеспечения резервного устройства на случай отказа основного.

    Читать еще:  Роль первого впечатления в деловом общении

    Регулятор давления — что это такое?! Характеристика, применение и виды регуляторов давления.

    Регулятор давления или по-другому, редуктор давления — это устройство, которое предназначается для стабилизации и понижения давления в водо-, газо- и других трубопроводах с различными средами. Регуляторы давления защищают подключенное к трубопроводам оборудование (сантехника, стиральные машины, бойлеры, газовые станции, газовые плиты), которое постоянно находится под воздействием высокого давления. Также, редукторы давления позволяют получить ровный и плавный напор, что положительно сказывается на долговечности работы сантехнических кранов, бачков, бойлеров при недопущении гидроудара, а также позволяет равномерно расходовать газ (как например, в газовых котлах) без резких скачков.

    Регулятор давления самостоятельно устанавливает необходимое давление в трубопроводе, при этом, для этого не требуется никакое сложное электрическое оборудование. На входе и выходе регулятор давления должен иметь либо патрубки с резьбовым, муфтовым или фланцевым РД-110 с фланцевым соединением соединением, помимо двух главных патрубков, регулятор давления, как правило, имеет патрубки для манометра и винтовой регулятор давления. Регулятор позволяет защитить оборудование во время скачкообразного изменения давления или гидроудара.

    Гидроудар может возникнуть, например, при включении и выключении насоса. Главная опасность, которую несет гидроудар, заключается в том, что скачкообразный перепад давления высокой амплитуды может повредить трубопровод на некоторых участках, либо вывести из строя оборудование (были случаи разрыва бойлерных баков с водой). В бытовых условиях, гидроудар можно наблюдать при открытии крана, чаще всего шарового типа. Гидроудар может усиливаться, в случае, если в водопроводной системе отсутствуют или перекрыты другие потребители.

    Помимо функции защиты от гидроудара, регуляторы давления служат для понижения входного давления. Понижение входного давления, в первую очередь, необходимо для подключенной аппаратуры, такой, как стиральные машины, бойлеры, поскольку они не рассчитаны на высокое давление, например, магистральных трубопроводов.

    В общем виде, описать принцип действия регулятора давления достаточно просто: при помощи регулирующего винта, производится изменение давления после редуктора. Если винт вкручивать, то клапан открывается, а давление повышается. В случае откручивания винта, давление понижается, поскольку закрывается клапан.

    !Важно! Перед тем, как регулировать давление в трубопроводе, необходимо открыть кран на несколько минут, чтобы удалить из трубы мусор и грязь, а также исключить завоздушивание системы.

    Вообще, редукторы давления могут отличаться друг от друга по характеристикам. Так, например, регулятор давления РДПД, принимающий давление в 16 бар (1,6 Мпа), на выходе будет выдавать, в зависимости от модели и от диаметра условного прохода от 0,25 до 10 бар (0,025 до 1,0 Мпа). Регулируемое давление в инструкциях по эксплуатации редукторов давления может быть обозначено через мегапаскаль , бар, и атмосферы, в зависимости от среды, в которой действует регулятор.

    Здесь следует учитывать, что:

    10 бар = 9,869 атм.

    Регулятор давления РДПД

    Регуляторы давления можно разделить в зависимости от максимальной температуры. Некоторые бытовые регуляторы рассчитаны на температуру до +60 o C, а промышленные, например регулятор давления РД-110, могут выдерживать температуру перекачиваемой среды от -60 до +150 o C.

    Общепринятым делением регуляторов давления на виды следует считать деление, в зависимости от принципа действия.

    По этому признаку различают:

    регуляторы непосредственного или прямого действия — здесь регулирующий орган (клапан) находится под непосредственным воздействием регулируемого параметра (напрямую или через зависимое механическое устройство). При изменении параметра давления на входе, перекрывающий клапан приводится в действие усилием, достаточным для смещения регулирующего органа без постороннего источника энергии. Такое усилие возникает в чувствительном элементе регулятора под действием давления регулируемой среды. Регулятором такого типа является, например РД-120 и РПДС.

    Читать еще:  Обвязка котла отопления железными трубами

    регуляторы непрямого действия или автоматические регуляторы — здесь, чувствительный элемент воздействует на регулирующий орган (клапан) при помощи постороннего источника энергии, в качестве которого может выступать жидкость, газ, воздух или электрический ток. Таким образом, в регуляторах непрямого действия, усилие, которое возникает в чувствительном элементе регулятора при изменении величины параметра давления регулируемой среды, приводит в действие не сам клапан, а лишь вспомогательное устройство. К таким устройствам, например, относят микропроцессорный регулятор давления КР-1Д.

    Регулятор давления КР-1Д

    И хотя оба вида регуляторов давления конструктивно состоят из регулирующего клапана, чувствительного или измерительного элемента, а также управляющего элемента, они имеют некоторые особенности, которые мы попробуем занести в таблицу.

    Признак

    Регулятор прямого действия

    Устройства автоматического регулирования и контроля давления газа в котельной.

    Для устойчивого регулирования работы отопитель­ных котлов необходимо обеспечить заданное рабочее давление газа. Это осуществляется газорегуляторной установкой (ГРУ) котельной, в которой давление пос­тупающего газа редуцируется до рабочего давления газогорелочных устройств.

    Оборудование ГРУ располагается похо­ду движения газа в такой последовательности: глав­ная запорная задвижка на воде в котельную, фильтр , предохранительный малогабаритный клапан типа ПКВ-100, универсальный регулятор давления ти­па РДУК-2-100 (системы Ф.Ф. Казанцева), задвиж­ка или кран на выходе из ГРУ, ротационный га­зовый счетчик типа, пружинный сбросной клапан типа ПСК-50 на линии сброса газа в про­дувочную свечу.

    Для возможности работы в обход главного регуля­тора давления монтируется байпасная линия ГРУ 2, на которой располагаются запорный кран и регулирую­щая запорная задвижка с выдвижным шпинделем. Для изменения давления газа на входе и выходе из ГРУ устанавливаются манометры типа. Такой же манометр устанавливается на бай­пасе.

    ГРУ снабжена продувочными линиями, которые не­обходимы для освобождения от газа и продувки обо­рудования установки при производстве ремонтных и профилактических работ. Попутно в ГРУ выводится продувочная линия газопровода котельной.

    Малогабаритные запорные клапаны ПКН (низкого давления) и ПКВ (высокого давления) предназначены для отключения подачи газа при повышении или пони­жении давления газа после регулятора РДУК сверх— допустимого. Рабочий импульс по давлению газа по­дается под мембрану головки клапана. Отбор импульса осуществляется за регулятором РДУК.

    Клапан ПСК устанавливается после РДУК и пред­назначен для сброса в атмосферу через сбросной га­зопровод избыточного давления газа при кратковременных повышениях давления за регулятором. Его настройку во избежание частых срабатываний предо­хранительного клапана от случайного кратковременно­го повышения давления газа производят на давле­ние, меньшее на 10% верхнего предела настройки ПКВ. Клапан ПСК работает только с ПКВ. При реду­цировании входного давления газа до низкого давле­ния 1000-2000 Па предохранительный клапан ПКН оснащается гидрозатвором, который заполняется ве­ретенным маслом. В этом случае гидрозатвор должен срабатывать от кратковременного повышения давле­ния раньше, чем ПКН.

    Регуляторы давления газа. Основным элементом газорегуляторной установки является регулятор дав­ления универсальной, предназначенный для понижения давления газа на входе (0,3-0,6 МПа) до необходимого рабочего давления: 0,06-0,3 МПа (среднее давление) или 1 — 5 КПа (низкое давление). Настройка на требуемое вы­ходное давление осуществляется приставками управ­ления (пилотами) соответственно высокого КВ—2 и низкого КН-2 давления.

    Регулятор давления РДУК-2-100 состоит из ре­гулирующего клапана и регулятора управления КН—2, связанного импульсными линиями с газо­проводом после регулятора и с подмембранным прост ранством регулирующего клапана. Через фильтр газ под входным давлением по импульсной трубке пос­тупает на клапан пилота и затем по импульсной трубке в мембранную камеру регулирующего кла­пана. Импульсная трубка имеет дроссель, через ко­торый в газопровод после регулятора сбрасывается избыток газа. Регулируемое давление газа подводит­ся импульсными трубками в надмембранное пространство камер регулятора и пилота.

    Подъемная сила мембраны создается разностью давлений газа в под и над мембранной полостях ка­меры. Величина перепада регулируется с помощью пружины пилота. При уменьшении расхода газа давле­ние в газопроводе за регулятором повысится, мем­брана регулятора и клапан пилота, преодолевая усилие пружины, начнут опускаться. Давление под мембра­ной при этом снизится, и основной клапан будет за­крываться, пока проходное сечение его седла не ста­нет достаточным для восстановления первоначального давления газа на выходе.

    Многолетний опыт эксплуатации регуляторов РДУК показывает, что их конструкция удовлетворяет предъ­являемым требованиям. Однако эти регуляторы имеют некоторые недостатки: запаздывание в регулировании при быстрых изменениях расходов газа; вероятность возникновения незатухающих колебаний (качки); кон­струкция элемента настройки не всегда позволяет производить быструю наладку регулятора.

  • Ссылка на основную публикацию
    Adblock
    detector