0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность современных теплопроводность кирпича

Теплопроводность различных видов кирпича

Новые материалы не могут не вызывать восхищение своими характеристиками и возможностями. Преимущества технологий строительства с их помощью неоспоримы. Искусственные и комбинированные строительные материалы превосходят традиционные сразу по нескольким важнейшим параметрам, зачастую – в несколько раз. Однако, традиционные материалы нельзя сбрасывать со счетов: кирпич, к примеру, был и остается востребованным.

Большинство зданий построено из кирпича: в этом не сложно убедиться. То есть, о способности этого материала успешно противостоять атмосферным явлениям, знают все.

Механическая прочность и долговечность этого материала также известна, как и экологическая безопасность. Кроме того, кирпич обладает хорошими тепло- и звукоизоляционными свойствами, морозостойкостью. Все эти качества делают его одним из лучших строительных материалов.

Виды кирпичей

Раньше этот материал выпускался двух видов: белый (силикатный) и красный (керамический) полнотелый. Иногда встречался керамический пустотелый. Современные керамические кирпичи бывают разных цветов и оттенков: желтые, кремовые, розовые, бордовые. Фактура их также может быть различной. Однако, по способу изготовления и составу они по-прежнему подразделяются на керамический и силикатный.

Общего у них, кроме геометрических параметров, нет ничего. Керамический состоит из обожженной глины (с различными добавками), а силикатный изготавливается из извести, кварцевого песка и воды. Эксплуатационные характеристики обоих видов регламентируются разными нормативными документами, что обязательно учитывается в строительной отрасли.

Большей популярностью пользуется керамический кирпич. Его разновидности: полнотелый, пустотелый, облицовочный с различной фактурой поверхности. Свойства этого строительного материала и его эстетические качества, разнообразие цветов и форм делают его уникальным и пригодным для возведения любых строений.

Назначение кирпичей различных видов и их отличительные признаки

Кирпич по назначению подразделяют на специальный, строительный и облицовочный. Для кладки стен применяется строительный, для облагораживания фасадов – облицовочный, а в особых случаях – специальный (например, для кладки печи, камина или печной трубы).

Полнотелый кирпич содержит не более 13% пустот: его используют для возведения стен (внешних и внутренних), столбов, колонн и так далее. Конструкции, построенные из такого материала, способны нести дополнительную нагрузку благодаря высокой прочности на сжатие, на изгиб, хорошей морозостойкости керамического полнотелого кирпича. Теплоизолирующие свойства зависят от пористости, от нее же зависит и водопоглощение, способность материала к сцеплению с кладочным раствором. Данный материал обладает не слишком хорошим сопротивлением к теплопередаче, в связи с чем стены жилых строений необходимо сооружать достаточной толщины или утеплять дополнительно.

У пустотелого кирпича объем пустот может доходить до 45% от общего объема изделия, поэтому его вес меньше, чем у полнотелого. Он пригоден для строительства легких перегородок и наружных стен, им заполняют каркасы многоэтажных зданий. Пустоты в нем могут быть как сквозными, так и закрытыми с какой-либо стороны. Форма пустот бывает круглой, квадратной, овальной, прямоугольной. Располагаются они вертикально и горизонтально (последний вариант менее удачен, так как такая форма – менее прочна).

У пустотелого кирпича объем пустот может доходить до 45% от общего объема изделия.

Пустоты позволяют экономить довольно много материала, из которого изготавливают кирпич. Кроме того, это значительно повышает его теплоизолирующие свойства. При этом важно, чтобы консистенция раствора была такой густоты, чтобы воздушные полости им не заполнялись.

Облицовочный кирпич применяют, соответственно, для облицовки зданий. Обычно, его размеры такие же, что и у стандартного, но в продаже есть и изделия с меньшей шириной. Чаще всего он изготавливается пустотелым, что определяет его высокие теплотехнические характеристики.

Среди специальных кирпичей чаще всего распространены огнеупорный (печной) и теплоизолирующий. И тот, и другой применяются для возведения каминов и печей (в том числе и мартеновских). Они изготавливаются из специальной, шамотной глины, но имеют разное назначение. Огнеупорный призван выдерживать температуры, превышающие 1600 °С, а теплоизолирующий – для предотвращения нагревания внешних стенок печей и потери тепла. Если возводить стены из этого материала, то они будут хорошо сохранять тепло. Но слабая прочность материала позволяет лишь заполнять им простенки.

Клинкерным кирпичом облицовывают цоколи зданий. Он обладает высокой морозостойкостью и механической прочностью благодаря применению тугоплавких глин при их изготовлении. Обжигание сырца производится при более высоких температурах, чем обычно.

Что такое теплопроводность

Этот термин обозначает способность материала передавать тепловую энергию. Эту способность, в данном случае, выражает коэффициент теплопроводности кирпича. У клинкерного этот показатель составляет порядка 0,8… 0,9 Вт/м К.

Силикатный обладает меньшей теплопроводностью и в зависимости от количества пустот, в нем содержащихся, подразделяется на: щелевой (0,4 Вт/м К), с техническими пустотами (0, 66 Вт/м К), полнотелый (0,8 Вт/м К).

Керамический является еще более легким, вследствие чего данный показатель у него еще более низкий. Для полнотелого кирпича он находится в пределах 0,5… 0,8 Вт/м К, для щелевого – 0,34… 0,43 Вт/м К и для поризованного – 0,22 Вт/м К. Кирпич пустотелый характеризуется коэффициентом теплопроводности, равным 0,57 Вт/м К. Данный показатель не постоянен и меняется в зависимости от пористости материала, количества и расположения пустот.

Читать еще:  Ремонт печей раствор для кирпича

Утверждение, что кирпич обладает высокой теплопроводностью, не совсем корректно: некоторые виды этого материала проводят тепло даже хуже, чем газобетонные блоки. Сочетание прочностных качеств полнотелых кирпичей и теплоизолирующих свойств пустотелых (а еще лучше – поризованной керамики) позволяет возводить надежные и энергоэкономичные здания.

Коэффициент теплопроводности силикатного и красного кирпича

С точки зрения надёжности строения и комфорта, в помещениях жилого здания лучшим материалом для стен в течение многих веков продолжает оставаться кирпич — теплопроводность его находится на хорошем уровне, а прочность проверена временем.

Применяемые материалы, технология изготовления и структура влияют на способность изделия передавать через себя температуру окружающим предметам. Для разного вида кирпичей показатель меняется.

У каждого вида кирпича свой показатель теплопроводности

Понятие о теплопроводности

Эта характеристика имеет важное значение в строительстве. Существует несколько взаимосвязанных вариантов подхода к оценке движения тепла в материалах:

  1. Способность предметов передавать нагрев от одной части целого к другой посредством последовательного перемещения хаотически колеблющихся частиц тела (молекул, электронов и атомов) от подвижных в сторону неактивных — холодных — называют теплопроводностью. Не следует путать этот показатель с термическим сопротивлением, которое свидетельствует о способности препятствовать перемещениям нагретых молекул.
  2. Коэффициент теплопроводности λ – способность физического тела передавать энергию за определённое время через единичную площадь при падении температуры на градус к наикратчайшей длине до изотермической поверхности. Другими словами, λ показывает, сколько тепла теряется за период прохождения сквозь стену. Принятая в технических расчётах размерность показателя — Вт/м·°C.
  3. Удельная теплопроводность Λ=λ/δ, где δ – толща преграды в метрах: Вт/м²·°C. Обратной величиной этой характеристики является термическое сопротивление: 1/Λ – оно оценивает препятствование 1 м² площади предмета перетоку энергии нагрева за час при разности температур поверхностей в 1°C. Другое название характеристики — коэффициент теплоизоляции, размерность: м²·°C/Вт.

В этом видео вы узнаете о характеристиках кирпича:

При выборе материалов обычно обращают внимание на 2 показателя: термическое сопротивление, определяемое из соотношения 1/(λ/δ), и гораздо чаще применяемый коэффициент теплопроводности λ. Если значения первой характеристики возрастают, это свидетельствует о возможности употребить материал для изоляции. И наоборот, низкие цифры указывают на использование в качестве проводника температуры. Чем выше коэффициент теплопроводности, тем потери нагрева здания весомее, а малые значения свидетельствуют об эффективном в части энергосбережения материале стен.

Факторы зависимости переноса тепла

Несущие ограждающие конструкции зданий делают из железобетонных панелей, блоков различного исполнения, кирпича, дерева. Физические свойства, определяющие их теплопроводность, одинаковы для всех материалов:

  • плотность способствует взаимодействию частиц, являющихся носителями энергии, поэтому с её возрастанием потери увеличиваются;
  • пористость создаёт проблемы для передачи тепла из-за промежутков воздуха с показателем λ, равном 0,026 Вт/м·°C при комнатной температуре;
  • структура отверстий в теле предмета — присутствие мелких каверн закрытого типа снижает потери тепла;
  • влажность влечёт вытеснение сухого воздуха из пор, а потому энергообмен частиц возрастает, и остывание или нагревание происходит быстрее.

Самым холодным из стеновых материалов считается железобетон с λ=1,29, а пеноблоки, имеющие коэффициент теплопроводности 0,08, сохраняют климат лучше всего. Керамиты также подчиняются приведённым закономерностям: теплопроводность пустотелого кирпича находится в пределах 0,4-0,7 Вт/м·°C, полнотелого — в 1,5 раза выше.

Виды кирпичей и значения коэффициента

Стеновые блоки в форме небольших брикетов по сырьевому материалу делят на 2 вида: керамические красные и силикатные белого цвета. Первый тип кирпичей изготавливают путём высокотемпературного — около 1000°C, обжига мелкодисперсных горных пород. Причём из тугоплавкой глины производят огнеупорные или печные блоки. Силикатный брикет делают из кварцевого песка. Свойства исходного сырья обусловливают различия теплопроводности кирпича каждого из типов. По назначению они подразделяются на классы:

  • строительный или рядовой;
  • облицовочный — для наружного декорирования стен, его вырабатывают гладким и правильных геометрических форм; коэффициент теплопроводности облицовочного кирпича 0,37-0,93 Вт/м·°C;
  • специального назначения — шамотный и печной, их используют при кладке дымоходов и других объектов высокотемпературного (до 1700°C) воздействия.

В зависимости от плотности коэффициент теплопроводности керамического кирпича изменяется от 0,4 до 0,9 Вт/м·°C. Пустотелость изделия является определяющим фактором для силикатных брикетов и может представляться для каждого в виде 3 отверстий диаметром 52 мм (15%), 11 — Ø27-32 (20-25%), 14 дырок Ø30-32 мм при 28-30% воздушных промежутков.

Изменчивость коэффициента теплопроводности силикатного кирпича в диапазоне 0,4-1,3 Вт/м·°C. Зависимость λ от типа керамитов и их плотности можно проследить по таблице:

Наименование клинкераУдельный вес изделия, т/м3Показатель λ, Вт/м·°C
Силикатный: рядовой/щелевой/с отверстиями1,0―2,2/―/―0,5―1,3/0,4/0,7
Керамический: плотный/пустотелый/пористый1,4―2,6/―/1,50,67―0,80/0,44―0,47/0,44
Шамотный1,850,85
Динасовый1,9―2,20,90―0,94
Хромитовый3,0―4,21,21―1,29
Магнезитовый2,6―3,24,7―5,1

Теплопроводность огнеупорного кирпича с повышением нагрева возрастает до λ=6,5-7,7 единицы. Но у пеношамотного (0,6 т/м³) и диатомитового (0,55) клинкеров остаётся на низком уровне — 0,25-0,3 Вт/м·°C при температуре 850-1300 градусов. Для традиционного печного шамотного кирпича λ=1,44, если нагрев 1000°C.

Теплопроводность материалов. Как считают? Сравнительная таблица на сайте Недвио

  • Недвижимость
  • Строительство
  • Ремонт
  • Участок и Сад
  • О загородной жизни
  • Вопросы-Ответы
    • Интерактивная кадастровая карта
    • О проекте Недвио
    • Реклама на Nedvio.com
Читать еще:  Размеры красного кирпича рабочего

Теплопроводность строительных материалов стала популярной темой в последние годы. Это связано с тем, что люди стали чаще задумываться о том, как сэкономить на отоплении дома зимой, либо сделать их более экологичными (если они отапливаются на угле, мазуте или другом неэкологичном топливе).

Полагаем, многие из вас уже слышали, что одни материалы хорошо проводят тепло, а другие — не очень. Соответственно из одних дома получаются сразу теплыми, а из других — их обязательно нужно утеплять. Но как же все это считают? По каким критериям и формулам? Об этом мы расскажем вам в данной статье.

Коэффициент теплопроводности Лямбда. Что это такое?

Коэффициент λ (лямбда) — это, пожалуй, наиболее важный параметр всех теплоизоляционных материалов. Его значение указывает на то, сколько тепла материал может пропускать через себя. То есть его показатель теплопроводности.

Чем ниже значение коэффициента λ (лямбда), тем меньше проводимость материала и, следовательно, он лучше изолирован от тепловых потерь. Это означает, что при одинаковых условиях больше тепла будет проходить через вещество с большей теплопроводностью.

Как же высчитывается этот коэффициент? Согласно второму закону термодинамики, тепло всегда уходит в область более низкой температуры. Для тела в форме теплопроводного кубоида в стационарных условиях количество передаваемого тепла зависит от вещества, пропорционально поперечному сечению тела, разности температур и времени теплопередачи.

Таким образом формула расчет будет выглядеть так:

  • λ (лямбда) — коэффициент теплопроводности;
  • ΔQ — количество тепла, протекающего через тело;
  • t — время;
  • L — длина тела;
  • S — площадь поперечного сечения корпуса;
  • ΔT — разность температур в направлении теплопроводности;
  • d — толщина перегородки.

За единицу измерения теплопроводности принимается система СИ — [Вт / (м · К)]. Она выражает количество теплового потока через единицу поверхности материала заданной толщины, если разница температур между двумя его сторонами составляет 1 Кельвин. Измеряют все эти показатели в специальных строительных лабораториях.

От чего зависит теплопроводность?

Итак, как мы уже убедились, коэффициент теплопроводности λ (лямбда) характеризует интенсивность теплопередачи через конкретный материал.

Так, например, наиболее теплопроводными являются металлы, а самыми слабыми — газы. Еще все проводники электричества, такие как медь, алюминий, золото или серебро, также хорошо пропускают через себя тепло, в то время как электрические изоляторы (дерево, пластик, резина) наоборот задерживают его.

Что может повлиять на этот показатель, кроме самого материала? Например, температура. Теплопроводность изоляционных материалов увеличивается с повышением температуры, а у металлов — напротив, уменьшается. Еще может повлиять наличие примесей. Сплавы разнородных металлов обычно имеют более низкую теплопроводность, чем их легирующие элементы.

В целом, теплопроводность веществ зависит, в основном, от их структуры, пористости, и прежде всего от их плотности. Поэтому, если производитель заявляет о низком значении лямбда при низкой плотности материала, — эта информация, как правило, не имеет ничего общего с действительностью и просто рекламный ход.

Значения теплопроводности для различных материалов

Сравнить, насколько тот или иной материал может пропускать тепло, вы можете воспользовавшись данной таблицей:

Теплопроводность [Вт / (м · К)]

Войлок, маты и плиты из минеральной ваты

0,16 — 0,3 (сосна и ель), 0,22 — 0,4 (дуб)

Н ержавеющая сталь

Применение коэффициента теплопроводности в строительстве

В строительстве действует одно простое правило — коэффициенты теплопроводности изоляционных материалов должны быть как можно ниже. Все потому, что чем меньше значение λ (лямбда), тем меньше можно сделать толщину изоляционного слоя, чтобы обеспечить конкретное значение коэффициента теплопередачи через стены или перегородки.

В настоящее время производители теплоизоляционных материалов (пенополистирол, графитовые плиты или минеральная вата) стремятся минимизировать толщину изделия за счет уменьшения коэффициента λ (лямбда), например, для полистирола он составляет 0,032-0,045 по сравнению с 0,15-1,31 у кирпича.

Что касается строительных материалов, то при их производстве коэффициент теплопроводности не имеет столь большого значения, однако в последние годы наблюдается тенденция к производству строительных материалов с низким показателем λ (например, керамических блоков, структурных изоляционных панелей, блоков из ячеистого бетона). Такие материалы позволяют построить однослойную стену (без утеплителя) или с минимально возможной толщиной утеплительного слоя.

Важно: коэффициент теплопроводности лямбда зависит от плотности материала, поэтому при покупке, к примеру, пенополистирола, обратите внимание на вес продукта. Если вес слишком мал, значит плиты не имеют заявленной теплоизоляции. Добавим, что производитель обязан указывать заявленное значение коэффициента теплопроводности на каждой упаковке.

Какой же строительный материал самый теплый?

В настоящее время это пенополиуретан (ППУ) и его производные, а также минеральная (базальтовая, каменная) вата. Они уже зарекомендовали себя как эффективные теплоизоляторы и сегодня широко применяются в утеплении домов.

Читать еще:  Кирпич облицовочный полнотелый радиусный

Для наглядности о том, насколько эффективны эти материалы, покажем вам следующую иллюстрацию. На ней отображено какой толщины материала достаточно, чтобы удерживать тепло в стене дома:

А как же воздух и газообразные вещества? — спросите вы. Ведь у них коэффициент Лямбда еще меньше? Это верно, Но если мы имеем дело с газами и жидкостями, помимо теплопроводности, здесь надо также учитывать и перемещение тепла внутри них — то есть конвекции (непрерывного движения воздуха, когда более теплый воздух поднимается вверх, а более холодный — опускается).

Подобное явление имеет место в пористых материалах, поэтому они имеют более высокие значения теплопроводности, чем сплошные материалы. Все дело в том, что небольшие частички газа (воздух, углекислый газ) скрываются в пустотах таких материалов. Хотя такое может случится и с другими материалами — в случае если воздушные поры в них будут слишком большими, в них может также начать происходить конвекция.

Разница между теплопроводностью и теплопередачей

Помимо коэффициента теплопроводности Лямбда существует также коэффициент теплопередачи U . Они звучат похоже, но обозначают совершенно разные вещи.

Так, если коэффициент теплопроводности является характеристикой определенного материала, то коэффициент теплопередачи U определяет степень теплоизоляции стены или перегородки. Проще говоря — коэффициент теплопроводности является исходным и напрямую влияет на значение коэффициента теплоотдачи U.

Если вам интересно получить больше информации на эту тему, а также узнать: какими материалами лучше всего утеплить ваш дом, в чем отличия между разными типами утеплителей, мы советуем прочитать эту статью.

Не забудьте добавить сайт Недвио в Закладки. Рассказываем о строительстве, ремонте, загородной недвижимости интересно, с пользой и понятным языком.

Таблица Теплопроводности строительных материалов

Качество Теплопроводности материала, его суть — в данном случае теплопроводность строительного материала – это свойство переноса энергии тепла от теплой части вещества (в данном случе — материала дома), к холодной — частицами (молекулами) этого вещества.

Большая часть значений коэффициентов теплопроводности стройматериалов в данной таблице позаимствованы в Приложении № 2 СНиП II-3-79 «Строительная теплотехника», из Свода правил — СП 50.13330.2012, а также — из СНиП 23-02-2003 «Тепловая защита зданий».

Таблица дополнена значениями теплопроводности, которые взяты с некоторых сайтов самих производителей строительных материалов.

Необходимо знать, что теплопроводность ряда строительных материалов имеет свойство меняться в зависимости от степени их влажности.

И потому, в таблице приведены значения теплопроводности строительных материалов как для «сухого» состояния строительного материала, так и для «влажного» состояния такового, в соответствии с приложением СП (свода правил) 50.13330.2012.

Знание таковых значений теплопроводности стройматериалов необходимы в силу того, что строительство домов происходит в различных климатических условиях (различных регионов страны), а значит, — степень влажности помещений будет при этом разной.

Значение «А» в таблице — это условия привычной, можно сказать «среднего качества» эксплуатации стройматериалов, значение «Б» — это условия более высокой в сравнении с привычной нормой среды — эксплуатации строящегося дома.

Условия А
для материала
(«обычные»)

Теплопроводность Кирпича силикатного . При кладке на цементно-песчанный раствор.

Теплопроводность Известняка.
При плотности — 1600 куб.м.

Теплопроводность Линолеума из ПВХ на теплоизолирующей основе.
При плотности — 1800 куб.м.

Теплопроводность Линолеума из ПВХ на тканевой основе. При плотности — 1800 куб.м.

Если в «Таблице теплопроводности материалов» для какого-либо из них отсутствует значение при условиях А и/или Б, это значит, что в «Своде правил» — СП 50.13330.2012, и у самих производителей — нет соответствующих значений, либо таковые значения просто не имеют смысла.

Работы в саду и огороде в Марте Март – это первый весенний месяц. И погоду предугадать еще трудно. По календарю уже весна, а на дворе зачастую еще.

Август – последний месяц лета. Месяц, славный своим щедрым урожаем. И месяц, когда мы делаем заготовки на весь год. Работы в саду и огороде в Августе.

Пергола своими руками? Это не так сложно. Если есть необходиомсть визуально отделитьодну часть сада от другой, еще это называется зонированием, в том слечае.

ДЕКОРАТИВНЫЕ ОГРАДЫ СВОИМИ РУКАМИ. Что можно предпринять, если в Вашем саду есть хозяйственная зона, и она выглядит не слишком эффектно, или пытается несколько.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector