0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплопроводность кирпича таблица гост

Просто о сложном: сравнительная таблица теплопроводности строительных материалов

Комфорт и уют в доме во многом зависят от грамотно рассчитанного теплообмена ещё на этапе строительства. Для этого учитывают всё. Чтобы расчёты были более точными, а сделать их было гораздо легче, применяется таблица теплопроводности строительных материалов. С её помощью можно рассчитать, насколько тепло будет в доме и насколько экономнее получится его отопление. Рассмотрим основные параметры теплопроводности различных материалов и методику вычисления подобной величины общей конструкции.

Что такое теплопроводность, термическое сопротивление и коэффициент теплопроводности

Что же за «зверь» − теплопроводность? Если «расшифровать» сложное физическое определение, то можно получить следующее пояснение. Теплопроводность – свойство, которым обладают все строительные материалы. Характеризуется способностью отдавать тепло от нагретого предмета более холодному. Чем быстрее и интенсивнее это происходит, тем холоднее сам материал, соответственно, и строение из него нуждается в более интенсивном обогреве. Что не очень эффективно, особенно в денежном плане.

Для оценки величины теплопроводности используются специальные коэффициенты, которые уже заранее выявлены. ГОСТ 30290-94 контролирует методы определения подобной характеристики. Последняя нераздельно связана с термическим сопротивлением, которое означает сопротивление слоя теплоотдачи. В случае многослойного материала оно рассчитывается как сумма термических сопротивлений отдельных слоёв. Сама же эта величина равна отношению толщины слоя к коэффициенту.

Внимание! Для упрощённого расчёта теплосопротивления стены в сети можно найти калькулятор с доступным и понятным интерфейсом.

Как видите, в определении теплопроводности нет ничего сложного и непонятного. Зная все подобные характеристики будущих материалов, можно составить «энергоэффективный бутерброд», но только при условии учёта всех обстоятельств, которые будут влиять на теплоэффективность каждого слоя конструкции.

Основные параметры, от которых зависит величина теплопроводности

Не все строительные материалы одинаково теплоэффективны. На это влияют следующие факторы:

    Пористая структура материала говорит о том, что подобное строение неоднородно, а поры наполнены воздухом. Тепловые массы, перемещаясь через такие прослойки, теряют минимум своей энергии. Поэтому пенобетон именно с замкнутыми порами считается хорошим теплоизолятором.

Замкнутые поры пенобетона наполнены воздухом, который по праву считается лучшим теплоизолятором

Повышенная плотность материала гарантирует более тесную взаимосвязь частиц друг с другом. Соответственно, уравновешивание температурного баланса происходит намного быстрее. По этой причине плотный материал обладает большим коэффициентом проводимости тепла. Поэтому железобетон считается одним из самых «холодных» материалов.

Высокая плотность даёт хорошую прочность железобетону, но также и «обделяет» его теплоэффективностью

  • Влажность – злокачественный фактор, повышающий скорость прохождения тепла. Поэтому так важно качественно произвести гидроизоляцию необходимых узлов здания, грамотно организовать вентиляцию и использовать максимально инертные к намоканию строительные материалы.
  • «Холодно, холодно и сыро. Не пойму, что же в нас остыло. » Даже Согдиана знает о том, что сырость и холод − вечные соседи, от которых не спрячешься в тёплом свитере

    Зная, что такое проводимость тепла, и какие факторы на неё влияют, можно смело пробовать применять свои знания для расчётов будущих строительных конструкций. Для этого нужно знать коэффициенты используемых материалов.

    Коэффициент теплопроводности строительных материалов – таблицы

    Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

    Таблица коэффициентов теплоотдачи материалов. Часть 1

    Таблица теплопроводности изоляционных материалов для бетонных полов

    Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

    Таблица теплопроводности кирпича

    Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

    Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

    Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

    Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

    Теплопроводность разных видов кирпичей

    Таблица теплопроводности металлов

    Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

    Теплоэффективность разных видов металлов. Часть 3

    Таблица теплопроводности дерева

    Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

    Прочность разных пород древесины

    Таблица проводимости тепла бетонов

    Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

    Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

    Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

    Читать еще:  Керамический кирпич входной контроль

    Какой коэффициент теплопроводности у воздушной прослойки

    В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу. Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины.

    Таблица проводимости тепла воздушных прослоек

    Калькулятор расчёта толщины стены по теплопроводности

    На практике подобные данные применяют часто и не только профессиональными проектировщиками. Нет ни одного закона, запрещающего самостоятельно создавать проект своего будущего дома. Главное, чтобы тот соответствовал всем нормативам и СНиПам. Чтобы рассчитать теплопроводность стены, можно воспользоваться специальным калькулятором. Подобное «чудо прогресса» можно как установить к себе на компьютер в качестве приложения, так и воспользоваться услугой онлайн.

    Окно расчёта калькулятора

    В нём нет премудростей. Просто выбираешь необходимые данные и получаешь готовый результат.

    Расчёт толщины стен с использованием глиняного обыкновенного кирпича на цементно-песчаном растворе

    Существуют и более сложные калькуляторы расчёта, где учитываются все слои стен, пример подобного расчётного «механизма» показан на фото ниже.

    Расчёт проводимости тепла всех прослоек стен

    Конечно, теплоэффективность будущего здания – это вопрос, требующий пристального внимания. Ведь от него зависит, насколько тепло будет в доме и насколько экономно будет его отапливать. Для каждого климатического региона существуют свои нормы коэффициентов теплопроводности ограждающих конструкций. Можно рассчитать самостоятельно теплоэффективность, но если возникают проблемы, лучше обратиться за помощью к специалистам.

    Рассчет теплопроводности стен: таблица теплосопротивления материалов

    Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.

    Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.

    Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
    Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
    Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
    То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.

    Как рассчитать теплопроводность стены?

    Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
    Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.

    Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.

    Теплосопротивление слоя =толщина слоя (м)
    Коэффициент теплопроводности материала ( )

    Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)

    Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.

    Единицы измерения теплосопротивления —

    Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.

    Пример 1

    Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?

    Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.

    Вид кирпичаКоэффициент
    теплопро-
    водности*,
    Кирпичная кладка
    на цементно-песчаном
    растворе, плотность
    1800 кг/м³*
    Теплосопроти-
    вление стены толщи-
    ной 0,37 м,
    Красный глиняный (плотность 1800 кг/м³)0,560,700,53
    Силикатный, белый0,700,850,44
    Керамический пустотелый (плотность 1400 кг/м³)0,410,490,76
    Керамический пустотелый (плотность 1000 кг/м³)0,310,351,06

    (*из межгосударственного стандарта ГОСТ 530-2007)

    Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.

    Пример 2

    Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14 . Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.

    Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .

    Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286 . Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.

    Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
    1,356 .

    Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.

    Таблица теплосопротивления материалов

    МатериалТолщина
    материала (мм)
    Расчетное теплосо-
    противлениеа (м² * °С / Вт)
    Брус1000,71
    Брус1501,07
    Кладка из красного кирпича
    (плотность 1800 кг/м³)
    380
    (полтора кирпича)
    0,53
    Кладка из белого силикатного кирпича380
    (полтора кирпича)
    0,44
    Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)380
    (полтора кирпича)
    0,76
    Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)380
    (полтора кирпича)
    1,06
    Кладка из красного кирпича
    (плотность 1800 кг/м³)
    510
    (два кирпича)
    0,72
    Кладка из белого силикатного кирпича510
    (два кирпича)
    0,6
    Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³)510
    (два кирпича)
    1,04
    Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³)510
    (два кирпича)
    1,46
    Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³)2001,11
    Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³)2000,69
    Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³)2000,65
    Теплоизоляционные материалы
    Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС501,25
    Ветрозащитные плиты Изоплат250,45
    Теплозащитные плиты Изоплат120,27

    Снова обратимся к СНиПам: теплосопротивление наружной стены, например, в Московской области должно быть не меньше 3 . Помните цифры, которые мы получили? В Российской Федерации нет районов, для которых эта величина составляла хотя бы 1,5 (не говоря уже о значениях еще ниже). Для сравнения приведем такие данные: в Германии эта норма определена не менее 3,4 , в Финляндии — не менее 5 (это, разумеется, уже не по нашим СНиПам, а по их регламентирующим документам).

    Эти требования — для домов постоянного проживания. Если дом (как написано в СНиПах) предназначен для сезонного проживания, либо отапливается менее 5 дней в неделю, эти требования на него не распространяются.
    Итак мы можем сделать вывод, что в домах со стенами в 1,5 кирпича, либо из бруса в 15 см проживать постоянно… нежелательно. Но ведь живем же! Да, только цена отопления 1 м³ из года в год становится все выше. Со временем все домовладельцы перейдут к эффективному утеплению домов — экономические соображения заставят заранее рассчитать теплопроводность стены и выбрать наилучшее техническое решение.

    Керамический кирпич

    Керамический кирпич — строительный материал из обожженной глиняной массы в форме прямоугольного параллелепипеда с размерами 265х120х65 (и др.), применяющийся как конструктивный и ограждающий элемент (рядовой кирпич) или облицовочный (лицевой кирпич). По ГОСТ 530-2012 изделие номинальной толщиной 140 мм и более называется камнем.

    Состав: глина

    Способ изготовления: Применяется два метода производства керамического кирпича: полусухого прессования и более популярный метод пластического формования. В первом способе сырец формируют из глины влажностью 4-16% сильным прессованием и затем обжигают. Достоинства метода полусухого прессования: более быстрый, более простая механизация. Во втором глиняную массу влажностью 23-35% формируют с помощью ленточного пресса, затем сушат и обжигают. Достоинства метода пластического формирования: возможность выпускать изделия различных размеров, форм и пустотностей, в отдельных случаях более высокая прочность и морозостойкость.

    Разновидности по структуре: пустотелый и полнотелый (камень только пустотелый)

    По области применения: рядовой и лицевой (камень с пазогребневым и с пазовым соединением может быть только рядовым), шамотный, клинкерный

    Размеры и форматы:

    Обозначение видаНоминальные размерыОбозначение размера
    Длина или нерабочий размерШирина или рабочий размерТолщина нешлифо-ванных камнейТолщина шлифо-ванных камней
    КМ250
    250
    380
    250
    250
    510
    250
    260
    380
    510
    250
    260
    250
    260
    120
    250
    250
    380
    250
    120
    250
    250
    250
    250
    380
    380
    510
    510
    140
    140
    140
    140
    188
    219
    219
    219
    219
    219
    219
    219
    219
    219





    229
    229
    229
    229
    229
    229
    229
    229
    229
    2,1НФ
    4,5НФ
    6,8НФ
    6,8НФ
    6,0НФ
    6,9НФ
    7,0НФ
    7,3НФ
    10,7НФ
    14,3НФ
    10,7НФ
    11,1НФ
    14,3НФ
    14,9НФ
    КМД129
    188
    248
    129
    129
    250
    250
    250
    380
    510
    219
    219
    219
    219
    219
    229
    229
    229
    229
    229
    3,6НФ
    5,2НФ
    7,1НФ
    5,5НФ
    7,4НФ

    Марка по прочности: М100, М125, М150, М175, М200, М250, М300; клинкерный кирпич – М300, М400, М500, М600, М800, М1000; камни – М25, М35, М50, М75, М100, М125, М150, М175, М200, М250, М300; кирпич и камень с горизонтальными пустотами – М25, М35, М50, М75, М100.

    Марка по морозостойкости: F25, F35, F50, F75, F100, F200, F300

    Теплопроводность: 0,27 – 0,7 (кирпич рядовой/лицевой пустотелый/полнотелый); 0,16 – 0,25 (камень)

    Ср. плотность (классы): 0,7; 0,8; 1,0; 1,2; 1,4; 2,0; 2,4

    Класс средней плотности изделияГруппа изделий по теплотехническим характеристиками
    0,7; 0,8Высокой эффективности
    1,0Повышенной эффективности
    1,2Эффективные
    1,4Условно-эффективные
    2,0; 2,4Малоэффективные (обыкновенные)

    Плотность: 700 – 2400 кг/см3

    Класс средней плотности изделияСредняя плотность, кг/м3
    0,7До 700
    0,8710– 800
    1,0810−1000
    1,21010−1200
    1,41210−1400
    2,01410-2000
    2,42010-2400

    Влагопоглощение: 8-12%

    Вес: 2 — 4 кг (кирпич полнотелый/пустотелый лицевой/рядовой 1НФ)

    Цена: 9 — 15 руб. (кирпич полнотелый/пустотелый лицевой/рядовой 1НФ)

    Достоинства: экологичность, высокая прочность, высокая морозостойкость, высокая теплоемкость, высокая устойчивость к агрессивным средам, универсальность, не деформативен, в отличие от силикатного имеет низкое влагопоглощение, низкую теплопроводность и более высокую огнестойкость

    Недостатки: возможно наличие высолов, более дорогой в отличие от силикатного

    Где стоит использовать: Рядовой кирпич используется для возведения несущих и самонесущих стен и перегородок, цоколей и др.конструкций. Лицевой — для облицовки фасадов зданий. Шамотный для строительства печей и дымоходов. Клинкерный для мощения дорожек и тротуаров.

    Где не стоит использовать: Кирпич полусухого прессования нельзя применять для кладки цоколей, фундаментов и наружных стен влажных помещений.

    Действующий ГОСТ на 2014 год: ГОСТ 530-2012.

    Пример маркировки по ГОСТу: КР-р-по 250×120×65/1НФ/150/1,4/50/ГОСТ 530-2012.
    Расшифровка: Кирпич рядовой полнотелый с размерами 250х120х65, формат 1НФ, марка по прочности М150, средняя плотность 1,4 ( 1210−1400 кг/см3), класс по морозостойкости F50. Маркировка по ГОСТу 530-2012

    ГОСТы и СНиПы:

    Испытания теплопроводности кирпича и камней в кладке
    ГОСТ 530-95 | ГОСТ 26254-84 | ГОСТ 530-2007

    Испытания на прочность сцепления в каменной кладке
    СНиП П-7-81 п.3.39 | ГОСТ 24992-81

    Испытания на воздухопроницаемость ограждающих конструкций
    СП 23-101-2004

    Испытания на изоляцию воздушного шума
    ГОСТ 27296-87 | СНиП 23-03-2003

    ТЕПЛОТЕХНИЧЕСКИЙ РАСЧЁТ СТЕНЫ — полнотелый силикатный кирпич 640 мм.

    Теплотехнический расчёт

    Теплотехнический расчет стены.

    Цель теплотехнического расчета — вычислить толщину утеплителя при заданной толщине несущей части наружной стены, отвечающей санитарно-гигиеническим требованиям и условиям энергосбережения. Иными словами – у нас есть наружные стены толщиной 640 мм из силикатного кирпича и мы собираемся их утеплить пенополистиролом, но не знаем какой толщины необходимо выбрать утеплитель, чтобы были соблюдены строительные нормы.

    Теплотехнический расчет наружной стены здания выполняется в соответствии со СНиП II-3-79 «Строительная теплотехника» и СНиП 23-01-99 «Строительная климатология».

    Теплотехнические показатели используемых строительных материалов (по СНиП II-3-79*)

    Теплоусвоения (при периоде 24 ч)

    1- штукатурка внутренняя (цементно-песчаный раствор) — 20 мм

    2- кирпичная стена (силикатный кирпич) — 640 мм

    3- утеплитель (пенополистирол)

    4- тонкослойная штукатурка (декоративный слой) — 5 мм

    При выполнении теплотехнического расчёта принят нормальный влажностный режим в помещениях — условия эксплуатации («Б») в соответствии с СНиП II-3-79 т.1 и прил. 2, т.е. теплопроводность применяемых материалов берём по графе «Б».

    Вычислим требуемое сопротивление теплопередаче ограждения с учетом санитарно-гигиенических и комфортных условий по формуле:

    где tв – расчётная температура внутреннего воздуха °С, принимаемая в соответствии с ГОСТ 12.1.1.005-88 и нормами проектирования

    соответствующих зданий и сооружений, принимаем равной +22 °С для жилых зданий в соответствии с приложением 4 к СНиП 2.08.01-89;

    tn – расчётная зимняя температура наружного воздуха, °С, равная средней температуре наиболее холодной пятидневки, обеспеченностью 0,92 по СНиП 23-01-99 для г. Ярославль принимается равной -31°С;

    n – коэффициент, принимаемый по СНиП II-3-79* (таблица 3*) в зависимости от положения наружной поверхности ограждающей конструкций по отношению к наружному воздуху и принимается равным n=1;

    Δ t n – нормативный и температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции – устанавливается по СНиП II-3-79* (таблица 2*) и принимается равным Δ t n =4,0 °С;

    αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным αв = 8,7 Вт/м 2 *°С.

    R тр = (22- (-31))*1 / 4,0* 8,7 = 1,52

    Определим градусо-сутки отопительного периода по формуле:

    где tв — то же, что и в формуле (1);

    tот.пер — средняя температура, °С, периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;

    zот.пер — продолжительность, сут., периода со средней суточной температурой воздуха ниже или равной 8 °С по СНиП 23-01-99;

    Определим приведенное сопротивление теплопередаче Rо тр по условиям энергосбережения в соответствии с требованиями СНиП II-3-79* (таблица 1б*) и санитарно-гигиенических и комфортных условий. Промежуточные значения определяем интерполяцией.

    Сопротивление теплопередаче ограждающих конструкций (по данным СНиП II-3-79*)

    Сопротивление теплопередаче ограждающих конструкций R(0) принимаем как наибольшее из значений вычисленных ранее:

    R тр = 1,52 тр = 3,41, следовательно R тр = 3,41 (м 2 *°С)/Вт = R.

    Запишем уравнение для вычисления фактического сопротивления теплопередаче R ограждающей конструкции с использованием формулы в соответствии с заданной расчетной схемой и определим толщину δx расчётного слоя ограждения из условия:

    где δi – толщина отдельных слоёв ограждения кроме расчётного в м;

    λi – коэффициенты теплопроводности отдельных слоев ограждения (кроме расчётного слоя) в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;

    δx – толщина расчётного слоя наружного ограждения в м;

    λx – коэффициент теплопроводности расчётного слоя наружного ограждения в (Вт/м*°С) принимаются по СНиП II-3-79* (приложение 3*) – для этого расчёта таблица 1;

    αв — коэффициент теплоотдачи внутренней поверхности ограждающих конструкций принимается по по СНиП II-3-79* (таблица 4*) и принимается равным αв = 8,7 Вт/м 2 *°С.

    αн — коэффициент теплоотдачи (для зимних условий) наружной поверхности ограждающей конструкции принимается по по СНиП II-3-79* (таблица 6*) и принимается равным αн = 23 Вт/м 2 *°С.

    Термическое сопротивление ограждающей конструкции с последовательно расположенными однородными слоями следует определять как сумму термических сопротивлений отдельных слоев.

    Для наружных стен и перекрытий толщина теплоизоляционного слоя ограждения δ x рассчитывается из условия, что величина фактического приведённого сопротивления теплопередаче ограждающей конструкции R должна быть не менее нормируемого значения R тр , вычисленного по формуле (2):

    Раскрывая значение R , получим:

    R = 1/23 + (0,02/0,93 + 0,64/0,87 + 0,005/0,93) + δx/0,041 + 1/8,7

    Исходя из этого, определяем минимальное значение толщины теплоизоляционного слоя

    δx = 0,041*(3,41- 0,115 — 0,022 — 0,74 — 0,005 — 0,043)

    Принимаем в расчёт толщину утеплителя (пенополистирол) δx = 0,10 м

    Определяем фактическое сопротивление теплопередаче рассчитываемых ограждающих конструкций R , с учётом принятой толщины теплоизоляционного слоя δx = 0,10 м

    R = 1/23 + (0,02/0,93 + 0,64/0,87 + 0,005/0,93 + 0,1/0,041) + 1/8,7

    Условие R0 ≥ R тр соблюдается, R = 3,43 (м 2 *°С)/Вт R тр =3,41 (м 2 *°С)/Вт

    Теплоизоляция (утеплитель пенополистирол с коэффициентом теплопроводности 0,041) толщиной 100 мм при толщине несущей части наружной стены из силикатного кирпича толщиной 640 мм на цементно–песчаном растворе соответствует санитарно-гигиеническим требованиям и условиям энергосбережения.

    При эксплуатации стены без утеплителя «точка росы» возникает в толще стены. Стена просто отсыревает и не аккумулирует тепло. Поверхность стены в помещении при отрицательной температуре — холодная, что приводит к образованию на стене плесени и конденсата.

    При эксплуатации стены с утеплителем «точка росы» не возникает в стене. В некоторых случаях — при повышении влажности внутри помещения и понижении температуры снаружи точка росы появится в утеплителе ближе к наружной стороне — со временем выветривается.

    А вот что будет происходить в стене при внутреннем утеплении .

    Так же вы можете выполнить самостоятельно теплотехнический расчёт онлайн

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector