Силикатный кирпич нормы гост - Ремонт и дизайн от ZerkalaSPB.ru
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Силикатный кирпич нормы гост

Каков размер силикатного кирпича и его стандарты по ГОСТу?

Силикатный кирпич благодаря появляющимся новым технологиям, улучшающим его внешний вид, является востребованным продуктом в современном строительстве. Его технология производства соответствует ГОСТу,
устанавливающему для производимого кирпича стандарт соответствия всем заявленным требованиям.

Силикатный кирпич — это строительный материал в виде блоков, изготавливаемый из смеси извести и песка.

Кирпич силикатный производят из кварцевого песка, в который добавляют известь и еще некоторые вещества, улучшающие качественные характеристики готового изделия. Силикатному кирпичу сначала придают форму с помощью пресса по размерам, указанным в стандартах, и получившуюся заготовку помещают в автоклав, имеющий давление 8-12 атмосфер. Там его обрабатывают водяным паром при температуре 170-200 °С. Качество произведенной продукции будет зависеть от соблюдения всех технологических процессов. Для их соблюдения имеется автоматизированный контроль, который осуществляется на всех этапах производства.

Размеры силикатного кирпича будут зависеть от вида готового изделия, которое бывает одинарным, полуторным и двойным.

Весь технологический цикл производства силиката занимает не более 18 часов.

Какие размеры имеет силикат?

Виды силикатного кирпича.

Кирпич и камни силикатные изготовляют в форме прямоугольного параллелепипеда, имеющего стандартные размеры. У одинарного кирпича размеры 250х120х65 мм. Кирпич силикатный пустотелый одинарный будет иметь такие же параметры. Полуторный кирпич имеет размеры 250×120×88 мм и может весить примерно 4-4,3 кг. Размер двойного силикатного кирпича — 130х176х206 мм. Такие изделия подойдут для строительства стен зданий не более 3 этажей. Применение двойных изделий позволит уменьшить общие затраты.

Плотность силикатного кирпича равна 1900 кг/м³. Изготовитель может предложить не только полнотелые, но и пустотелые кирпичи. Их стали производить для облегчения плотности, которая на 20 % больше по сравнению с керамическими изделиями. Изделие из силиката обладает меньшим весом, если в его теле имеются пустоты. Это уменьшает давление на фундамент и улучшает теплоизоляционные свойства. Меньшая теплопроводность позволяет делать стены меньшей толщины, не уменьшая степени их промерзания и звукоизоляции. У кирпичей одинаковых размеров вес может быть разным.

Размеры силикатного кирпича.

Выпускаемый камень силикатный пустотелый 11-ти пустотный имеет размер 250x120x138 мм. У пустотелого силиката, согласно ГОСТу, все отверстия несквозные и расположены перпендикулярно. Размер толщины наружных стенок при наличии пустот не должен быть меньше 10 мм. Изделие может быть изготовлено с другими отверстиями, имеющими форму, отличную от стандартных требований, но все размеры должны соответствовать ГОСТу.

Пустотелый кирпич предпочтительнее использовать при возведении многоэтажных зданий. Он обладает лучшей теплоизоляцией и меньшим удельным весом, значительно снижая нагрузку на фундамент. Его заменяют полнотелым кирпичом требуемого размера, если на наружной стене здания планируется монтировать вентилируемый фасад.

Характеристики силиката

Выбирая размеры силикатного кирпича, следует учитывать такие его свойства, как морозостойкость и прочность.

Характеристики силикатного кирпича.

По морозостойкости изделия разделяют по маркам F15, F25, F35, F50. Для внешних стен наименьшая марка должна быть F25. Чтобы понизить водопоглощение и повысить морозостойкость, после окончания выведения стен используют специальные водоотталкивающие жидкости. Жидкие гидрофобизаторы наносят на лицевую кладку по окончании кладочных работ. Обработанная поверхность не будет впитывать воду, и это улучшает характеристики силиката.

Прочность изделия определяют по марке: 75, 100, 125, 150, 175, 200, 250, 300. Ее надо учитывать, выбирая размер изделия. Самая низкая марка используется для строительства объектов, имеющих один этаж, и при строительстве несущих стен, имеющих небольшие нагрузки. Для 2-3-этажных зданий подойдет марка М-100. Для более высоких зданий применяется силикат со степенью прочности М-150, М-200.

В 1 м³ кладки потребуется одинарного кирпича 414 шт. а утолщенного кирпича — 314 шт. Это примерное число, потому что требуемое количество зависит от способа кладки и толщины швов. Полуторный кирпич выгоднее использовать, чем одинарный, потому что уменьшается расход раствора во время выведения стен. Если расчеты со строителями осуществляются на основе проектно-сметной документации, то оплата труда строителя уменьшается в пределах 10%.

Где применяется силикат?

Виды кладок из силикатного кирпича.

Предназначение силиката — устройство стен и перегородок, возведение столбов, колонн и конструкций, несущих дополнительную нагрузку. Перед покупкой кирпича необходимо уточнить, какая именно кладка нужна, облицовочная или основная, которая будет спрятана под отделкой из другого материала. От этого зависит толщина кирпичной кладки и выбор строительных материалов. Если кладка будет размером в 250 мм, то покупают одинарный кирпич, имеющий размер 250x120x138 мм. Если стена должна быть толстой в 2 кирпича или в 2,5, то, соответственно, следует подумать об облегчении общего веса здания и уменьшении затрат на строительство. Тогда надо выбирать пустотелые изделия, имеющие размеры 250х120х65 мм или 250 х120х88 мм. Идеальным выбором может стать двойной кирпич.

Одинарный силикатный кирпич обычно применяется для возведения несущих стен и внутренних перегородок, выкладывания наружной части дымовых труб.

Для заполнения пустот в монолитно-бетонных конструкциях, возведении внешних стен удобно воспользоваться полуторным или двойным рядовым кирпичом. При строительстве одноэтажного дома можно выбрать как полнотелый кирпич, так и пустотелый. Для многоэтажных построек выше 3 этажей подходит полнотелый силикат.

Силикатный кирпич имеет высокий уровень водопроницаемости, поэтому его не рекомендуют использовать при строительстве цоколей.

При строительстве наружного слоя могут использовать лицевой, а внешнего слоя — полуторный или двойной кирпич, который имеет внутри пустоты. При таком комплексном использовании нескольких видов кирпича стены получаются более теплыми, а общий вес строения уменьшается. С помощью комбинирования в выборе размеров кирпичей, добиваются уменьшения трат на создание цоколя. При облицовке старых стен хорошо использовать цветной лицевой кирпич.

При решении выбора строительного материала следует учитывать то обстоятельство, что силикат имеет высокий уровень водопроницаемости. Это его свойство может серьезно снизить теплоизоляционные характеристики и морозостойкость, если постройка из него будет сделана в сыром месте без устройства дренажа, гидроизоляции. Из-за этого силикатный кирпич не используют для строительства цоколей и стен для промышленных зданий, где будут производиться работы, повышающие влажность. Силикатный кирпич имеет низкую термическую устойчивость, и его нельзя использовать для кладки нагревательных устройств. Для этого есть специальный шамотный кирпич из красной глины.

Когда используют лицевые и рядовые кирпичи?

Схема кладки рядового кирпича.

Силикат разделяют на лицевые и рядовые кирпичи, изготовление которых находится под жестким контролем. Их производят в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному предприятием, которое занимается производством силиката.

Рядовой силикат используют для возведения несущих стен и перегородок там, где рабочая поверхность стены будет покрыта слоем штукатурки или другой строительной косметикой. С помощью рядового одинарного кирпича с размерами 250х120х65 мм можно добиться звуконепроницаемости, потому что этот материал плохо проводит звуковые волны.

Лицевой кирпич — это парадное отделочное изделие. Он отличается от рядового тем, что имеет совершенно ровные поверхности, острые ребра без сколов, отсутствие пятен, ровный цвет. Поверхность граней изделия идеально плоская, а ребра прямолинейные. При желании заказчика могут изготовить изделия, имеющие с лицевой стороны закругленные вертикальные ребра радиусом не более 6 мм. Он может иметь две лицевые поверхности: тычковую и ложковую. Допускается выпускать изделия любых размеров с одной лицевой поверхностью, если имеется индивидуальный заказ.

Отбитые углы и сбитые ребра, шероховатости, трещины и другие повреждения на лицевых поверхностях не допускаются. Вздутие и шелушение поверхности, увеличение объема, нарушение размера, наличие сетки мелких трещин не должны присутствовать на готовом кирпиче.

Схема кладки лицевого кирпича.

Лицевым кирпичом, размеры которого можно выбрать исходя из личных желаний, пользуются для внешней отделки здания. Как правило, это одинарный кирпич, с размерами 250х120х65 мм. Для цветных видов лицевого кирпича могут выпускаться изделия полуторного размера 250×120×88 мм. По фактуре его поверхности могут быть гладкими, «колотыми», рельефными. Производитель может выпустить под заказ партию с декоративным покрытием, которое используют для отделки оконных проемов и воссоздания дизайнерского замысла. Такие изделия могут иметь глубокий рельеф лицевой поверхности, имитирующей природный камень, и при облицовке здания стены приобретут оригинальный вид.

Силикатный кирпич имеет более высокие показатели по теплоизоляции, и этим он превосходит керамические кирпичи. Поэтому для облицовки дома предпочтительнее выбрать силикат, имеющий различные цвета и оттенки. Используя лицевой силикатный кирпич, потребитель получает теплое здание с красивой отделкой.

Цветное разнообразие силиката

Таблица цветов силикатного кирпича.

Современное производство не останавливается на выпуске традиционного белого силиката. Производитель использует различные добавки и изменяет белый цвет силикатного кирпича на пастельные краски различных оттенков, что делает его похожим на природный камень. Изделия из силиката могут быть желтыми, соломенными, цвета слоновой кости, оранжевыми, персиковыми, розовыми. Можно заказать у производителя все оттенки коричневого. Необычно смотрится силикат с оттенком мокрого асфальта. Имеются кирпичи дымчатого и брусничного цвета. На основе такого цветового разнообразия можно выполнять многоцветные панно, барельефы и другие фрагменты, украшающие здание. Основной размер цветного силиката полуторный, 250×120×88 мм.

Читать еще:  Облицовочный кирпич расход раствора

Окрашивание кирпича производят железно-окисными пигментами. Они настолько устойчивы к воздействию осадков и ультрафиолета, что постоянно сохраняют первоначальный цвет. Цвета лицевых кирпичей должны соответствовать имеющемуся на предприятии эталону, и пятна на их поверхности не допускаются.

Силикатные кирпичи относят к экологически чистым материалам, имеющим большую плотность, чем керамические изделия. У них повышенная прочность и отличные звукоизоляционные свойства. Производители силиката настойчиво рекомендуют свою продукцию, имеющую различные параметры, для возведения многоквартирных домов, чтобы снизить звукопроницаемость внутренних и внешних стен. Современный силикат — отличный материал для строительства частных домов, коттеджей, дач.

1 . АППАРАТУРА И МАТЕРИАЛЫ

1.1 . Пресс гидравлический по ГОСТ 8905-82.

1.2 . Линейка измерительная металлическая по ГОСТ 427-75 .

1.4 . Штангенциркуль по ГОСТ 166 -80.

1.5 . Щуп по ГОСТ 882-75.

1.6 . Сито с сеткой 1,25К по ГОСТ 3584-73.

1.7 . Пластина металлическая или стеклянная размерами 270×150×5 мм. Отклонение от плоскостности пластин не должно превышать 0,1 мм.

1.9 . Пластина резинотканевая толщиной 5 — 10 мм по ГОСТ 7338 -77.

1.14 . Портландцемент, портландцемент с минеральными добавками, шлакопортландцемент марки 400 по ГОСТ 10178 -76.

1.15 . Гипсовое вяжущее марки Г-16 по ГОСТ 125-79 .

2 . ПОДГОТОВКА К ИСПЫТАНИЮ

2.1 . Образцы для испытания отбирают от партии. Размер партии и число образцов, подлежащих испытанию для определения пределов прочности при сжатии и изгибе, устанавливают нормативно-технической документацией на соответствующие виды стеновых материалов, утвержденной в установленном порядке.

2.2 . Образцы, отобранные во влажном состоянии, перед испытанием выдерживают не менее 3 сут в закрытом помещении при температуре (20 + 5) °С или подсушивают в течение 4 ч при температуре (105 ± 5) °С. Образцы, содержащие гипс, сушат в течение 8 ч при температуре, не превышающей 50 °С.

2.3 . Кирпич, камни и блоки, отобранные для испытания, по внешнему виду и размерам должны удовлетворять требованиям нормативно-технической документации на эти материалы, утвержденной в установленном порядке.

2.4 . Предел прочности при сжатии кирпича определяют на образцах, состоящих из двух целых кирпичей или из двух его половинок, а предел прочности при сжатии камней определяют на целом камне. Кирпич делят на половинки распиливанием или раскалыванием в соответствии со схемой, приведенной в рекомендуемом приложении 1 .

Допускается определять предел прочности при сжатии на половинках кирпича, полученных после испытания его на изгиб.

Кирпичи или его половинки укладывают постелями друг на друга. Половинки размещают поверхностями раздела в противоположные стороны.

2.5 . При подготовке образцов выравниванию подлежат поверхности, которые в конструкции располагаются перпендикулярно направлению сжимающей нагрузки.

2.6 . Образцы из керамического кирпича и камня пластического формования изготавливают, соединяя части образца и выравнивая их опорные поверхности цементным раствором в соответствии с обязательным приложением 2 .

Образцы из силикатного кирпича и камня и керамического кирпича полусухого прессования испытывают насухо, не производя выравнивания их поверхностей цементным раствором.

2.7 . Предел прочности при сжатии бетонных камней определяют на целом камне. Опорные поверхности образцов выравнивают цементным раствором, если их отклонение от плоскостности превышает 0,3 мм.

2.8 . Предел прочности при сжатии камней из горных пород и блоков из природного камня определяют на образцах, размеры которых указаны в нормативно-технической документации на эти виды стеновых материалов, утвержденной в установленном порядке. Опорные поверхности образцов выравнивают шлифованием или цементным раствором. Отклонение от плоскостности шлифованных поверхностей образцов не должно превышать 0,1 мм.

2.9 . Допускается при определении предела прочности при сжатии керамического кирпича и камней пластического формования изготавливать образцы, выравнивая их опорные поверхности шлифованием, гипсовым раствором или применяя прокладки из технического войлока, резинотканевых пластин, картона и других материалов.

Образцы, изготовленные с применением гипсового раствора, испытывают не ранее чем через 2 ч после начала схватывания. Толщина слоя раствора должна быть не более 5 мм, водогипсовое отношение 0,32 — 0,35.

В случае проверки потребителем, а также при арбитражных проверках образцы для определения предела прочности при сжатии кирпича и камней пластического формования изготовляют в соответствии с п. 2.6 .

2.10 . Предел прочности при изгибе керамического и силикатного кирпича определяют на целом кирпиче.

В местах опирания и приложения нагрузки поверхность кирпича пластического формования выравнивают цементным или гипсовым раствором, шлифованием или применяют прокладки по п. 2.9 . Кирпич с несквозными пустотами устанавливают на опорах так, чтобы пустоты располагались в растянутой зоне образца.

Силикатный кирпич и керамический кирпич полусухого прессования испытывают на изгиб без применения растворов и прокладок.

3 . ПРОВЕДЕНИЕ ИСПЫТАНИЙ

3.1 . Образцы измеряют с погрешностью до 1 мм. Каждый линейный размер образца вычисляют как среднее арифметическое значение результатов измерений двух средних линий противолежащих поверхностей образца.

Диаметр цилиндра вычисляют как среднее арифметическое значение результатов четырех измерений: в каждом торце по двум взаимно перпендикулярным направлениям.

3.2 . Испытание образцов на сжатие

На боковые поверхности образца наносят вертикальные осевые линии. Образец устанавливают в центре плиты пресса, совмещая геометрические оси образца и плиты, и прижимают верхней плитой пресса.

Нагрузка на образец, должна возрастать непрерывно и равномерно со скоростью, обеспечивающей его разрушение через 20 — 60 с после начала испытания.

3.2.1 . Предел прочности при сжатии R сж , МПа (кгс/см 2 ), образца вычисляют по формуле

где Р — наибольшая нагрузка, установленная при испытании образца, МН (кгс);

F — площадь поперечного сечения образца, вычисляемая как среднее арифметическое значение площадей верхней и нижней его поверхностей, м 2 (см 2 ).

При вычислении предела прочности при сжатии образцов из двух целых кирпичей толщиной 88 мм или из двух их половинок результаты испытаний умножают на коэффициент 1,2.

При вычислении пределов прочности при сжатии образцов-кубов и образцов-цилиндров из природного камня результаты испытаний умножают на коэффициент, указанный в таблице.

Техническая характеристика силикатного кирпича

Требования к техническим свойствам силикатного кирпича меняются в зависимости от области его применения, обычно определяемой строительными нормами, неодинаковыми в разных странах.

Прочность при сжатии и изгибе.

В зависимости от предела прочности на сжатие силикатный кирпич подразделяют на марки 75, 100, 125, 150 и 200.

Марка кирпича определяется его средним пределом прочности при сжатии, который составляет обычно 7,5 — 35 МПа. В стандартах ряда стран (Россия, Канада, США), наряду с этим, также регламентируют предел прочности кирпича при изгибе. Пустотелые камни средней плотностью 1000 и 1200 кг/м3 могут иметь марки 50 и 25. В большинстве стандартов предусмотрено определение прочности кирпича в состоянии и лишь в английском стандарте — в водонасыщенном.

В стандартах приведены средняя прочность кирпича данной марки и минимальные значения предела прочности отдельных кирпичей пробы, составляющие 75 — 80% среднего значения.

Водопоглощение — это один из важных показателей качества силикатного кирпича и является функцией его пористости, которая зависит от зернового состава смеси, её формовочной влажности, удельного давления при уплотнении. По 79 водопоглощение силикатного кирпича должно быть не менее 6%.

При насыщении водой прочность силикатного кирпича снижается по сравнению с его прочностью в состоянии так же, как и у других строительных материалов, и это, снижение обусловлено теми же причинами. Коэффициент размягчения силикатного кирпича при этом зависит от его макроструктуры, от микроструктуры цементирующего вещества и составляет обычно не менее 0,8.

Влагопроводность.

Она характеризуется коэффициентом влагопроводности, который зависит от средней плотности кирпича. При рср., примерно равной 1800 кг/м³, и различной влажности имеет следующие значения:

Таблица 1

W, % [pic]*10,9258111416,518,5
0 — 5, кгм²3,66,98,710,214,53073

Морозостойкость.

В нашей стране морозостойкость кирпича, особенно лицевого, является наряду с прочностью важнейшим показателем его долговечности. По 79 установлены четыре марки кирпича по морозостойкости. Морозостойкость рядового кирпича должна составлять не менее 15 циклов замораживания при температуре — 15 °С и оттаивания в воде при температуре 15 — 20 °С, а лицевого — 25, 35, 50 циклов в зависимости от климатического пояса, частей и категорий зданий, в которых его применяют.

Снижение прочности после испытания на морозостойкость по сравнению с водонасыщенными контрольными образцами не должно превышать 20% для лицевого и 35% для рядового кирпича первой категории и соответственно 15 и 20% для кирпича высшей категории качества.

Требования по морозостойкости к кирпичу марок 150 и выше предъявляются только в том случае, если его применяют для облицовки зданий. При этом кирпич должен пройти 25 циклов испытаний без снижения прочности более чем на 20%. По польскому стандарту силикатный кирпич всех видов должен выдерживать не менее 20 циклов замораживания и оттаивания без признаков разрушения. В стандартах Англии, США и Канады для облицовки наружных частей зданий, подвергающихся увлажнению и замораживанию, предусматривается кирпич повышенной прочности (21 — 35 МПа), но его морозостойкость не нормируется.

Читать еще:  Бежевый кирпич с белым швом

Морозостойкость силикатного кирпича зависит в основном от морозостойкости цементирующего вещества, которая в свою очередь определяется его плотностью, микроструктурой и минеральным составом новообразований. По данным П. Г. Комохова, коэффициент морозостойкости цементного камня из прессованного вяжущего автоклавной обработки колеблется после 100 циклов от 0,86 до 0,94. При этом с увеличением удельной поверхности кварца с 1200 до 2500 см²/г коэффициент морозостойкости несколько возрастает, а при дальнейшем увеличении дисперсности кварца он снижается.

В настоящее время в связи с применением механических захватов для съема и укладки сырца в сырьевую широту стали вводить значительно большее количество дисперсных фракций для повышения его плотности и прочности. Вследствие этого в структуре вырабатываемого сейчас силикатного кирпича заметную роль играют уже микрокапилляры, в которых вода не замерзает, чтозначительно повышает его морозостойкость.

Морозостойкость силикатных образцов зависит от вида гидросиликатов кальция., цементирующих зёрна песка (низкоосновных, высокоосновных или их смеси). После 100 циклов испытаний коэффициент морозостойкости образцов, предварительно прошедших испытания на атмосферостойкость, равнялся для низкоосновной связки 0,81, высокоосновной — 1,26 и их смеси — 1,65.

Изучалась также морозостойкость силикатных образцов, изготовленных на основе песков различного минерального состава. Были использованы наиболее распространенные пески: мелкий кварцевый, истый и с примесью 10% каолин итовой или монтмориллонитовой глины, полевошпатовый, смесь 50% полевошпатового и 50% мелкого кварцевого, крупный кварцевый, содержащий до 8% полевых шпатов.

Кремнеземистая часть вяжущего состояла из тех же, но размолотых пород. Соотношения между активной окисью кальция и кремнеземом в вяжущем назначали исходя из расчета получения цементирующей связки с преобладанием низко- или высокоосновных гидросиликатов кальция или их смеси. Количество вяжущего во всех случаях было постоянным. Однако, морозостойкость силикатных образцов после 100 циклов замораживания и оттаивания зависит не только от типа цементирующей связки, но и от минерального состава песка. Влияние минерального состава песка особенно сказывается при наличии связки из низкоосновных гидросиликатов кальция, когда в смесь введено 10% каолин итовой или монтмориллонитовой глины. Коэффициент морозостойкости при этом падает до 0,82. При повышении основности связки коэффициент морозостойкости составов, наоборот, повышается до 1,5, что свидетельствует о продолжающейся реакции между компонентами в процессе испытаний.

Из приведенных данных видно, что хорошо изготовленный силикатный кирпич требуемого состава является достаточно морозостойким материалом.

Атмосферостойкость.

Под атмосферостойкостью обычно понимают изменение свойств материала в результате воздействия на него комплекса факторов: переменного увлажнения и высушивания, карбонизации, замораживания и оттаивания.

Н. Н. Смирнов исследовал микроструктуру свежеизготовленных и пролежавших в кладке 10 лет образцов силикатного кирпича Кореневского, Краснопресненского, Люберецкого и Мытищинского заводов. Он установил, что в общем случае чешуйки новообразований за 10 лет частично замещаются вторичным кальцитом в результате карбонизации гидросиликатов кальция.

Гаррисон и Бесси испытывали в течение многих лет силикатный кирпич разных классов прочности, зарытый в грунт полностью или наполовину, а также лежащий в лотках с водой и на бетонных плитах, уложенных на поверхность земли. Они установили, что внешний вид кирпичей, лежавших 30 лет в земле с дренирующим и не дренирующим грунтом, мало изменился, но их поверхность размягчилась, а у кирпичей, частично зарытых в землю, открытая часть осталась без повреждений, хотя в некоторых случаях поверхность покрылась мхом.

Состояние кирпичей, находившихся 30 лет на бетонных плитах, зависело от их класса. Так, оказались без повреждений или имели незначительные повреждения 95% кирпичей класса 4 — 5 (28 — 35 МПа), 65% кирпичей класса 3 (21 МПа) и 25% кирпичей класса 2 (14 МПа). Все кирпичи класса 1 (7 МПа) имели повреждения уже через 16 лет. Все кирпичи, лежавшие 30 лет на земле в лотках с водой, получили повреждения, и чем ниже класс кирпича, тем раньше они появлялись: у кирпичей класса 1 — через 8 лет, класса 2 — через 19 лет; класса 3 — через 22 года и для классов 4 — 5 — через 30 лет.

Прочность кирпичей, пролежавших в земле 20 лет, уменьшилась примерно, вдвое. При этом наибольшее снижение прочности наблюдалось у кирпичей, находившихся в недренирующем глинистом грунте, а наименьшее — у кирпичей, наполовину зарытых в землю (стоймя). За 20 лет в зависимости от условий пребывания в грунте карбонизировалось 70 — 80% гидросиликатов кальция, причем в основном карбонизация произошла в первые 3 года. Таким образом, даже при таких исключительно жестких испытаниях силикатный кирпич классов 3 и 4 оказался достаточно стойким.

Общеизвестно, что прочность силикатного кирпича после остывания повышается. Именно поэтому по ранее действовавшему ОСТ 5419 предусматривалось определять его прочность не ранее чем через две недели после изготовления. Были проведены испытания кирпича на образцах, отобранных от большого, числа партий (в общей сложности 3 млн. шт.). По 10 кирпичей из каждой пробы раскалывали пополам, половинки разных кирпичей складывали попарно в определенной последовательности и испытывали сразу, а остальные укладывали на стеллажи и испытывали в той же последовательности через 15 сут. При этом было установлено, что прочность кирпича за это время возросла в среднем на 10,6%, влажность его уменьшилась с 9,6 до 3,5%, а содержание свободной окиси кальция снизилось на 25% первоначального. Таким образом, повышение прочности силикатного кирпича через 15 сут. после изготовления можно объяснить совместным влиянием его высыхания и частичной карбонизации свободной извести.

Термографическими и рентгеноскопическими исследованиями установлено, что после испытания образцов в климатической камере заметных изменений в цементирующей связке не отмечается, а после карбонизации гидросиликаты кальция превращаются в карбонаты и гель кремнекислоты, являющиеся стойкими образованиями, цементирующими зерна песка.

Таким образом, можно считать, что силикатный кирпич, изготовленный из песков различного минерального состава с использованием тонкомолотого вяжущего, является вполне атмосферостойким материалом.

Стойкость в воде и агрессивных средах.

Стойкость силикатного кирпича определяется степенью взаимодействия цементирующего его вещества с агрессивными средами, так как кварцевый песок стоек к большинству сред. Различают газовые и жидкие среды, в которых стойкость силикатного кирпича зависит от их состава. Из этих данных следует, что силикатный кирпич нестоек против действия кислот, которые разлагают гидросиликаты и карбонаты кальция, цементирующие зерна песка, а также против содержащихся в воздухе агрессивных газов, паров и пыли при относительной влажности воздуха более 65%. Необходимо отметить, что приведенные ориентировочные данные относятся к силикатному кирпичу по 53, требования к качеству которого значительно ниже, чем по 79.

Образцы силикатного кирпича подвергали воздействию проточной и непроточной дистиллированной и артезианской воды в течение более 2 лет. В основном коэффициент стойкости образцов падает в первые 6 мес., а затем остается без изменения. Более высокий коэффициент стойкости — у образцов, содержащих 5% молотого песка, а более низкий — у образцов, в состав которых введено 5% молотой глины. Образцы, содержащие 1,5% молотого песка, занимают промежуточное положение: их коэффициент стойкости составляет примерно 0,8, что следует признать достаточно высоким для рядового силикатного кирпича.

Аналогичные образцы подвергали воздействию сильно минерализованных грунтовых вод, содержащих комплекс солей, а также 5%-ного раствора Na2SO4 и 2,5%-ного раствора MgSO4.

Каждые 3 мес. определяли прочность и коэффициент стойкости образцов, находившихся в различных растворах. В растворе Na2SO4 прочность образцов снижается в основном в течение 9 мес., а к 12 мес. она стабилизируется и в дальнейшем не меняется. В отличие от этого прочность образцов, находившихся в растворе MgSO4, падает все время, и они начинают интенсивно разрушаться уже по истечении 15 мес.

Как правило, коэффициент стойкости образцов, содержащих 5% молотого песка, cоставляет в грунтовых водах и растворе Na2SO4 примерно 0,9, содержащих 1,5% молотого песка — 0,8, тогда как у образцов, в состав которых введено 5% молотой глины, в грунтовой воде и 5%-ном растворе Na2SO4 он достигает 0,7. Следовательно, образцы с молотой глиной нельзя признать достаточно стойкими к воздействию агрессивных растворов, а также мягкой и жесткой воды.

Таким образом, силикатный кирпич, в состав которого введено 5% молотого песка, обладает высокой стойкостью к минерализованным грунтовым водам, за исключением растворов MgSO4.

Жаростойкость.

К. Г. Дементьев, нагревавший силикатный кирпич при различной температуре в течение 6ч, установил, что до 200°С его прочность увеличивается, затем начинает постепенно падать и при 600’С достигает первоначальной. При 800°С она резко снижается вследствие разложения цементирующих кирпич гидросиликатов кальция.

Читать еще:  Чем удалить краску с облицовочного кирпича

Повышение прочности кирпича при его прокаливании до 200°С сопровождается увеличением содержания растворимой SiO2, что свидетельствует о дальнейшем протекании реакции между известью и кремнеземом.

Основываясь на данных исследований и опыте эксплуатации силикатного кирпича в дымоходах и дымовых трубах разрешается применять силикатный кирпич марки 150 для кладки дымовых каналов в стенах, в том числе от газовых приборов, для разделок, огнезащитной изоляции и облицовки; марки 150 с морозостойкостью Мрз35 — для кладки дымовых труб выше чердачного перекрытия.

Теплопроводность.

Теплопроводность сухих силикатных кирпичей и камней колеблется от 0,35 до 0,7 Вт/(мС) и находится в линейной зависимости от их среднейплотности, практически не завися от числа и расположения пустот.

Испытания в климатической камере фрагментов стен, выложенных из силикатных кирпичей и камней различной пустотности, показали, что теплопроводность стен зависит только от плотности последних. Теплоэффективные стены получаются лишь при использовании многопустотных силикатных кирпичей и камней плотностью не выше 1450 кг/м³ и аккуратном ведении кладки (тонкий слой нежирного раствора плотностью не более 1800 кг/м³, не заполняющего пустоты в кирпиче).

Силикатный кирпич ГОСТ

ГОСТ 379-95 Кирпич и камни силикатные. Технические условия

ГОСТ 379-95
Группа Ж11

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ
КИРПИЧ И КАМНИ СИЛИКАТНЫЕ
Технические условия

Silicate brick and stones. Specifications

МКС 91.100.15
ОКСТУ 5741

Дата введения 1996-07-01

1 РАЗРАБОТАН АО ВНИИстром им.П.П.Будникова с участием ЦНИИСК им.В.А.Кучеренко, НИИСФ и АО «Воронежстройматериалы» Российской Федерации
ВНЕСЕН Минстроем России

2 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации и техническому нормированию в строительстве (МНТКС) 19 апреля 1995 г.
За принятие проголосовали:

Наименование органа государственного управления строительством

Госупрархитектуры Республики Армения

Минстрой Республики Казахстан

Госстрой Кыргызской Республики

Минархстрой Республики Молдова

Госстрой Республики Таджикистан

Госкомархитектстрой Республики Узбекистан

3 ВВЕДЕН В ДЕЙСТВИЕ с 1 июля 1996 г. в качестве государственного стандарта Российской Федерации Постановлением Минстроя России от 4 декабря 1995 г. N 18-102

4 ВЗАМЕН ГОСТ 379-79

5 ИЗДАНИЕ (август 2004 г.) с Поправками (ИУС 10-96, 9-2003)

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

1 Область применения

Настоящий стандарт распространяется на силикатные кирпич и камни (далее — изделия), изготовляемые способом прессования увлажненной смеси из кремнеземистых материалов и извести или других известесодержащих вяжущих с применением пигментов и без них с последующим твердением под действием насыщенного пара в автоклаве.
Кирпич и камни применяют для кладки каменных и армокаменных наружных и внутренних стен зданий и сооружений, а также для их облицовки из лицевых изделий.
Требования, изложенные в пунктах 3.1, 3.2, 3.3.1, 3.3.3-3.3.5, 4.1.1.4-4.1.1.9, 4.1.2-4.1.5, 4.1.9, разделах 5 и 6, являются обязательными.
(Поправка, ИУС 10-96).

2 НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:
ГОСТ 162-90 Штангенглубиномеры. Технические условия
ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия
ГОСТ 427-75 Линейки измерительные металлические. Технические условия
ГОСТ 530-95 Кирпич и камни керамические. Технические условия
ГОСТ 2228-81 Бумага мешочная. Технические условия
ГОСТ 3560-73 Лента стальная упаковочная. Технические условия
ГОСТ 3749-77 Угольники поверочные 90°. Технические условия
ГОСТ 7025-91 Кирпич и камни керамические и силикатные. Методы определения водопоглощения, плотности и контроля морозостойкости
ГОСТ 8273-75 Бумага оберточная. Технические условия
ГОСТ 8462-85 Материалы стеновые. Методы определения пределов прочности при сжатии и изгибе
ГОСТ 10354-82 Пленка полиэтиленовая. Технические условия
ГОСТ 14192-96 Маркировка грузов
ГОСТ 15846-2002 Продукция, отправляемая в районы Крайнего Севера и труднодоступные районы. Упаковка, маркировка, транспортирование и хранение
ГОСТ 18242-72* Статистический приемочный контроль по альтернативному признаку. Планы контроля
________________
* На территории Российской Федерации действует ГОСТ Р 50779.71-99.
ГОСТ 18343-80 Поддоны для кирпича и керамических камней. Технические условия
ГОСТ 23421-79 Устройство для пакетной перевозки силикатного кирпича автомобильным транспортом. Основные параметры и размеры. Технические требования
ГОСТ 24332-88 Кирпич и камни силикатные. Ультразвуковой метод определения прочности при сжатии
ГОСТ 24816-81 Материалы строительные. Метод определения сорбционной влажности
ГОСТ 25951-83 Пленка полиэтиленовая термоусадочная. Технические условия
ГОСТ 30108-94 Материалы и изделия строительные. Определение удельной эффективной активности естественных радионуклидов
ГОСТ 30244-94 Материалы строительные. Методы испытаний на горючесть

3 ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

3.1 Кирпич и камни силикатные (далее — изделия) изготовляют в форме прямоугольного параллелепипеда размерами, указанными в таблице 1.

Примечание — По согласованию с потребителем допускается выпускать утолщенный кирпич размерами 250х120х88 мм

3.2 Предельные отклонения от номинальных размеров и геометрической формы изделия не должны превышать, мм:
— по длине, толщине и ширине — ±2;
— по непараллельности граней — +2.

3.3 Типы и размеры

3.3.1 Одинарный и утолщенный кирпич изготовляют полнотелым и пустотелым, камни только пустотелыми.

3.3.2 Размеры, форма и расположение отверстий в изделии, а также пустотность изделия приведены в приложении А.

3.3.3 Отверстия в изделиях должны быть несквозными и расположены перпендикулярно постели. Толщина наружных стенок пустотелых изделий должна быть не менее 10 мм.
Изделие может быть изготовлено другой пустотности, с отверстиями другой формы и расположения при условии соблюдения требований 4.1.2, 4.1.4, 4.1.8.
(Поправка, ИУС 10-96)

3.3.4 По прочности изделия изготовляют марок: 75, 100, 125, 150, 175, 200, 250, 300.

3.3.5 По морозостойкости изделия изготовляют марок: F15, F25, F35, F50.
Марка по морозостойкости лицевых изделий должна быть не менее F25.

3.3.6 В зависимости от средней плотности полнотелые изделия подразделяют на:
— пористые со средней плотностью до 1500 кг/мм*;
— плотные — свыше 1500 кг/м.*
___________________

* Текст документа соответствует оригиналу. — Примечание изготовителя базы данных.

3.3.7 В зависимости от назначения изделия изготовляют лицевыми и рядовыми.

3.3.8 Условное обозначение силикатных изделий должно состоять из названия, вида и назначения изделия, марки по прочности и морозостойкости, обозначения настоящего стандарта.
Примеры условных обозначений:
Кирпич силикатный одинарный рядовой марки по прочности 150, марки по морозостойкости F15:

Кирпич СОР-150/15, ГОСТ 379-95

Кирпич силикатный утолщенный рядовой марки по прочности 175, марки по морозостойкости F25:

Кирпич СУР-175/25 ГОСТ 379-95

Кирпич силикатный утолщенный лицевой марки по прочности 200, марки по морозостойкости F35:

Кирпич СУЛ-200/35 ГОСТ 379-95

Кирпич силикатный лицевой декоративный марки по прочности 150, марки по морозостойкости F25:

Кирпич СЛД-150/25 ГОСТ 379-95

Камень силикатный рядовой марки по прочности 125, марки по морозостойкости F15:

Камень СР-125/15 ГОСТ 379-95

4 ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Изделия должны изготовляться в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному предприятием-изготовителем.

4.1.1 Внешний вид

4.1.1.1 По фактуре лицевой поверхности лицевые изделия изготовляют гладкими с декоративным покрытием; по цвету — неокрашенными, имеющими цвет сырья, из которого они изготовлены, или окрашенными — из окрашенной смеси или с поверхностной окраской лицевых граней.

4.1.1.2 Лицевые изделия должны иметь две лицевые поверхности: тычковую и ложковую.
По согласованию с потребителем допускается выпускать изделия с одной лицевой поверхностью.

4.1.1.3 Поверхность граней изделия должна быть плоской, ребра — прямолинейными.
Допускается выпускать лицевые изделия с закругленными вертикальными ребрами радиусом не более 6 мм.

4.1.1.4 Цвет (оттенок цвета) лицевых изделий должен соответствовать образцу-эталону.
Пятна на лицевой поверхности изделий не допускаются.

4.1.1.5 На рядовом изделии не допускаются дефекты внешнего вида, размеры и количество которых превышают указанные в таблице 2.

1 Отбитости углов глубиной от 10 до 15 мм, шт.

2 Отбитости, притупленности ребер глубиной от 5 до 10 мм, шт.

3 Шероховатости или срыв грани глубиной, мм

4 Трещины на всю толщину изделия протяженностью по постели до 40 мм, шт.

4.1.1.6. Отбитости и притупленности углов и ребер, шероховатости, трещины и другие повреждения на лицевых поверхностях лицевых изделий не допускаются.

4.1.1.7 Проколы постели пустотелых изделий размером более 10 мм, а также дефекты изделий (вздутие и шелушение поверхности, увеличение объема, наличие сетки мелких трещин от непогасившейся силикатной смеси) не допускаются.

4.1.1.8 В рядовом изделии не допускается наличие в изломе или на поверхности глины, песка, извести и посторонних включений размером свыше 5 мм в количестве более 3.
Для лицевых изделий наличие указанных включений на поверхности не допускаются, в изломе допускается не более 3.

4.1.1.9 Количество половняка в партии должно быть не более 5% для рядовых изделий, 2% для лицевых изделий.

4.1.2 Марку камня по прочности устанавливают по пределу прочности при сжатии, а кирпича — по значению пределов прочности при сжатии и изгибе, указанных в таблице 3.

В мегапаскалях (кгс/см)

Предел прочности, не менее

всех видов изделий

одинарного и утолщенного полнотелого кирпича

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector