0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Рассчитать удельную теплоемкость кирпича массой 3 кг

Рассчитать удельную теплоемкость кирпича массой 3 кг

АльтИнфоЮг
Альтернативная энергетика и информация

  • Главная
  • О сайте
  • Интересные сайты
  • Сотрудничество
  • Контакты
  • Карта сайта
  • Изобретательство, патентование
    • Патенты
      • Холодильник не потребляющий энергию
      • Переносная ёмкость
      • Многофункциональное сигнально-осветительное устройство
      • Коллекция патентов
    • Изобретательство
      • Некоторые особенности патентования
      • Как заработать на интеллектуальной собственности
      • Взаимоотношения изобретателей, спонсоров, инвесторов
      • Планы на новые патенты
      • Изобретения Леонардо да Винчи
      • Предложение о сотрудничестве
  • Полезные устройства
    • Предлагаю
      • Прибор для проверки аккумуляторов
      • Автомобильный индикатор
      • Защита электродвигателя
      • Приспособление для проверки контактов
      • Утепление стен мансарды изнутри
    • Рекомендую
      • Солнечная нагревательная установка
      • Солнечное охлаждение
      • Экономичный электрический обогрев пола
      • Расчёт тёплого пола
      • Солнечная баня
      • Водяная мельница в Осетии
  • Наука и техника
    • Наука
      • Тень силиконовой долины
      • Новое противоопухолевое средство
    • Теоретические основы энергетики
      • Магнитокалорическое охлаждение
      • Охлаждение путем расширения газов
      • Холодильный цикл
      • Использование вихревого эффекта
      • Источники холода
    • Холодильная техника
      • Характеристики бытовых холодильников
      • Абсорбционные безнасосные холодильные машины
      • Абсорбционные холодильные машины периодического действия
      • Принципиальная схема паровой компрессорной холодильной машины
      • Принцип действия абсорбционной холодильной машины
      • Пароэжекторные холодильные машины
      • Каскадные холодильные машины
      • Классификация и краткая характеристика хладагентов
      • Анализ работы абсорбционных холодильных машин
      • Термоэлектрическое охлаждение
      • Ледники и ледяные склады
    • Термодинамика
      • Основные понятия и определения
      • Внутренняя энергия
      • Первый закон термодинамики
      • Техническая работа
      • Теплоемкось и ее виды
      • Энтальпия
      • Второй закон термодинамики
      • Термодинамические процессы идеальных газов
      • Круговой процесс
      • Термический КПД цикла
      • Цикл Карно
      • Необратимые потери обратного цикла Карно
    • О технике
      • Классификация тепловых насосов
      • Оборудование использующее низкопотенциальные тепловые ресурсы
      • Газовый двигатель внутреннего сгорания
      • К вопросу о точности и производительности пазовырубных прессов
  • Справочники
    • Единицы измерения
      • Производные единицы измерения СИ
      • Старые русские единицы измерения
      • Единицы применяемые в Англии и США
      • Основные единицы измерения СИ
      • Обозначения и наименования произвольных единиц
      • Кратные и дольные единиц измерения
    • Соотношения единиц
      • Соотношения между единицами мощности
      • Соотношения между единицами силы
      • Соотношения между единицами скорости
      • Соотношения между единицами энергии
      • Соотношения между единицами давления
      • Соотношения между единицами времени
    • Электротехнические материалы
      • Электроизоляционные лаки
      • Электроизоляционные материалы
      • Характеристики металлических проводниковых материалов
      • Электроизоляционные лакоткани
      • Характеристика сплавов высокого удельного сопротивления
      • Классы по нагревостойкости электроизоляционных материалов
      • Величины токов плавления проволоки
    • Разные справки
      • Лампы накаливания
      • Свойства водного льда
    • Провода и кабели
      • Активные и реактивные сопротивления кабелей
      • Зависимость сечения жилы от тока
      • Характеристики кабеля по току КЗ
      • Классификация силовых кабелей
    • Тепловые, энергетические характеристики
      • Характеристики твёрдого топлива
      • Характеристики жидких топлив
      • Удельная теплота сгорания
      • Значения термо-э.д.с. металлов и сплавов
      • Удельная теплоёмкость
      • Удельная теплота плавления
      • Температура кипения различных веществ
  • Энергетика
    • Анализ
      • В пользу негодных технологий и концепций
      • Некоторые особенности альтернативной энергетики
      • Буферный режим заряда
      • Индукционная передача энергии
      • Высокочастотная передача энергии на расстояние
      • Использование естественного холода
      • Использование солнечной энергии
      • Предотвращение снижения плодородия почвы за счет использования возобновляемых источников энергии
      • Секреты бестопливных генераторов энергии
    • Природные ресурсы
      • Три дороги российской нефти
      • Страны с крупнейшими запасами нефти
      • Солнечная энергия
      • Гидроэнергетические ресурсы
      • Энергия ветра
      • Биогазовые установки
    • Системы альтернативного энергоснабжения
      • Экономичное альтернативное энергоснабжение
      • Нагрев воды солнцем
      • Механические накопители энергии
      • Стационарные супермаховики в энергосистемах
      • Режимы работы системы супермаховиков
      • Автономное и резервное электроснабжение
      • Альтернативная энергетика в Америке
    • Энергетическое оборудование
      • Ветродвигатели с вертикальной осью
      • Как экономить на оплате электричества
      • Выбор оборудования альтернативной энергетики
      • Кислотные аккумуляторы
      • Аналоговые зарядные устройства
      • Принцип работы импульсного преобразователя
      • Контроллер в альтернативной энергетике
      • Эксплуатация необслуживаемых аккумуляторов
      • Тепловые реле для защиты электродвигателей
      • Выбор двигателей-генераторов для супермаховиков
      • Водяной тепловой аккумулятор
      • Бензиновый электрогенератор
      • Сборка батареи из аккумуляторов
    • Энергоэффективные технологии
      • Светодиодные лампы преимущества и недостатки
      • Эффективное использование солнечной энергии
      • Особенности и виды светодиодных светильников для ЖКХ
      • Алгоритм работы современного гибридного автомобиля
      • Солнечная баня
      • Возможности комбинированных биогазовых установок
    • Реальное оборудование альтернативной энергетики
      • Мультиметр емкости аккумуляторов для сотовых телефонов
      • Приборы для измерения мощности и энергии
      • Светильники на солнечных батареях
      • Выбор панелей для солнечных батарей
      • Комплектование и испытания солнечных батарей
      • Нагрузочное сопротивление
      • Преобразователь LM2596
      • Цифровые приборы
  • Расчёты
    • Расчёт идей
      • Расчёт суперконденсаторов ё-мобиля
      • Расчёт систем — вечный двигатель
      • Получение водорода из алюминия
      • Расчёт электростанции на термоэлементах
      • Расчёт энергии молнии
    • Расчёт узлов
      • Пример расчёта кабеля и характеристик ветрогенератора
      • Расчёт крановых двигателей
      • Определение мощности счётчиком
      • Расчёт емкости аккумуляторов
      • Расчет аккумуляторов для солнечной электростанции
    • Экономические расчёты
      • Принципы расчёта эффективности альтернативной энергетики
      • Сравнительная оценка стоимости энергии
      • Стоимость нагрева воды
  • Политика и экономика
    • Политика
      • Европа заложник США на пути к мировому господству
      • О законе Димы Яковлева
    • Экономика
      • Коррупция, причины и последствия
      • Некоторые цифры и факты
      • Рыночная экономика, базарный вариант
      • Откуда дровишки в студёную пору
      • Развал строго по плану
  • Разное
    • Ещё одна версия гибели «Курска»
    • Испытание лекарственных средств в России
    • Анекдоты
    • Как разместить статью
    • Реальное и мифическое в пластиковых окнах
    • Мой видеоканал
    • Интересные сайты
  • Отзывы и комментарии
    • Отзывы на «Коррупция причины и последствия»
    • Отзывы на «Европа заложник США на пути к мировому господству»
    • Отзывы на «Развал строго по плану»
    • Отзывы на «Откуда дровишки в студеную пору»
    • Ещё отзывы на «Некоторые особенности альтернативной энергетики»
    • Отзывы на «Рыночная экономика базарный вариант»
    • Отзывы на «В пользу негодных технологий и концепций»
    • Отзывы на «Три дороги Российской нефти»
    • Отзывы на «Испытания лекарственных средств в России»
    • Отзывы на «Некоторые особенности альтернативной энергетики»
  • Впечатления от Америки
Читать еще:  Кирпич для труб отопления

ЗДОРОВЬЕ И ДЕНЬГИ ЗДЕСЬ

Удельная теплоёмкость

Удельная теплоёмкость вещества означает количество теплоты, необходимое для нагрева единицы веществ на один градус. Чаще всего за единицу вещества берётся масса в 1 кг. Реже используются единицы объёма, например, кубометр или литр. В химии при термохимических реакциях используется молярная теплоёмкость, когда за единицу вещества принимают моль. Удельная теплоёмкость заметно меняется при изменении температуры и в большей степени при изменении агрегатного состояния вещества, например, значения теплоёмкости воды будут разными в жидком, твёрдом и газообразном состоянии. В приведённой таблице указывается также температура и агрегатное состояние вещества.

Значения удельной теплоёмкости и соотношения между единицами измерений даны по книге «Справочник по физике и технике» А.С. Енохович.

1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>

Электронная библиотека

При постоянном давлении найти среднюю удельную массовую теплоёмкость кислорода при повышении его температуры от 600 до 2000 о С.

Искомую теплоёмкость принимаем равной истинной удельной изобарной теплоёмкости при средней арифметической температуре ( ):

= (600 + 2000) / 2 = 1300 о С

Находим в приложении 2 истинную удельную изобарную теплоёмкость кислорода при температуре 1300 о С: = 1,1476 кДж/(кг·К). Это значение теплоёмкости равно средней удельной изобарной теплоёмкости кислорода в интервале температур 600…2000 о С.

Найти среднюю молярную изобарную теплоёмкость углекислого газа при повышении его температуры от 200 до 1000 о С.

Найти эту теплоёмкость можно найти из первого соотношения (5.1), из которого получаем:

Предварительно находим молярную массу (М). Относительная молярная масса углекислого газа Мг = 44,01. Следовательно, его молярная масса РАВНА:

М = 44,01·10 -3 кг/моль.

Среднюю удельную изобарную теплоёмкость ( ) находим из приложения 2 как истинную удельную изобарную теплоёмкость при средней температуре . В нашем примере эта температура равна:

= (200 + 1000) / 2 = 600 о С.

Из приложения 2 находим, что при этой температуре искомая истинная удельная теплоёмкость = 1,1962 кДж/(кг·К). Значит, средняя удельная изобарная теплоёмкость в данном интервале температур тоже равна:

Теперь можно найти искомую среднюю молярную изобарную теплоёмкость:

= 1,1962 · 44,01·10 -3 = 52,89 кДж/(моль·К).

Воздух, содержащийся в баллоне вместимостью 12,5 м 3 при температуре 20 о С и абсолютном давлении 1МПа, подогревается до температуры 180 о С. Найти подведённую теплоту Q.

Из определения удельной теплоемкости с учетом того, что процесс нагревания происходит при постоянном объеме, можно записать:

Принимая во внимание, что при температуре = 20 о С давление воздуха составляет = 1 МПа, массу воздуха ( ) найдём из уравнения состояния:

= 1·10 6 · 12,5 / (287,1 · 293) = 148,6 кг,

где = 287,1 Дж/(кг·К) – удельная газовая постоянная воздуха (см. приложение 1).

Среднюю удельную изохорную теплоёмкость принимаем равной истинной теплоёмкости при средней температуре воздуха 100 о С, т.е.

Следовательно, искомое количество подведенной теплоты равно:

= 722,6 · 148,6·(180 – 20) = 17,2 МДж.

Температура смеси, состоящей из азота массой 3 кг и кислорода массой 2 кг, в результате подвода к ней теплоты при постоянном объёме повышается от 100 до 1100 о С. Найти количество подведённой теплоты.

Искомое количество теплоты (Q) найдем из выражения:

Среднюю удельную изохорную теплоёмкость смеси найдём согласно уравнению:

где и – массовые доли компонентов азота и кислорода.

По условию задачи масса смеси = 3 + 2 = 5 кг.

Следовательно, массовая доля равна:

азота = 3 / 5 = 0,6;

кислорода = 2 / 5 = 0,4.

Для нахождения теплоёмкостей компонентов смеси и воспользуемся приложением 2. Примем, что они равны истинной удельной изохорной теплоёмкости при средней арифметической температуре:

= (100 + 1100) / 2 = 600 о С.

Читать еще:  Облицовка профилем или кирпичом

При этой температуре:

для азота = 843 Дж/(кг·К);

для кислорода = 809 Дж/(кг·К).

Найдем теплоёмкость смеси:

= 0,6 · 843 + 0,4 · 0,809 = 829 Дж/(кг·К)

Подведённая к смеси теплота равна:

= 5·829·(1100 – 100) = 4,1 МДж.

Состав продуктов сгорания бензина в цилиндре двигателя внутреннего сгорания в молях следующий: углекислого газа СО2 – 71,25, кислорода О2 – 21,5, азота N2 – 488,3; паров воды Н2О – 72,5. Температура газов 800 о С. Определить долю тепловых потерь с уходящими газами, если теплота сгорания бензина 43950 кДж/кг.

Найдём сначала теплоту (Q1) уходящих газов. Предположим, что сгорание происходит при постоянном давлении, поэтому можно записать:

где – средние молярные изобарные теплоёмкости соответственно всей смеси и её компонентов; – количество вещества соответственно всей смеси и её компонентов.

При среднеарифметической температуре процесса

= (0 + 800) / 2 = 400 о С

средние удельные теплоёмкости компонентов, а также их молярные массы согласно даным, представленных в приложении 2, равны:

для углекислого газа = 1,11 кДж/(кг·К), М1 = 44·10 -3 кг/моль;

для кислорода = 1,02 кДж/(кг·К), М2 = 32·10 -3 кг/моль;

для азота = 1,09 кДж/(кг·К), М3 = 28·10 -3 кг/моль;

паров воды = 2,08 кДж/(кг·К), М4 = 18·10 -3 кг/моль.

По найденным значениям удельных теплоёмкостей и молярных масс вычислим значения молярных теплоёмкостей компонентов смеси:

= 1,11·44·10 -3 = 48,84 Дж/(моль·К);

= 1,02·32·10 -3 = 32,64 Дж/(моль·К);

= 1,09·28·10 -3 = 30,52 Дж/(моль·К);

= 2,06·18·10 -3 = 37,08 Дж/(моль·К).

Найдем количество теплоты, уносимой смесью (выхлопными газами):

= 800·(71,25 · 48,84 + 21,5 · 32,64 + 488,3 · 30,52 + 72,5 · 37,08) = 17,418 кДж.

Обозначив теплоту сгорания бензина через Q, получим, что потеря теплоты с выхлопными газами в процентах составляет:

Формула для расчёта удельной теплоёмкости вещества

Удельная теплоёмкость — это энергия, которая требуется для увеличения температуры 1 грамма чистого вещества на 1°. Параметр зависит от его химического состава и агрегатного состояния: газообразное, жидкое или твёрдое тело. После его открытия начался новый виток развития термодинамики, науки о переходных процессах энергии, которые касаются теплоты и функционирования системы.

Как правило, удельная теплоёмкость и основы термодинамики используются при изготовлении радиаторов и систем, предназначенных для охлаждения автомобилей, а также в химии, ядерной инженерии и аэродинамике. Если вы хотите узнать, как рассчитывается удельная теплоёмкость, то ознакомьтесь с предложенной статьёй.

Формула

Перед тем, как приступить к непосредственному расчёту параметра следует ознакомиться с формулой и её компонентами.

Формула для расчёта удельной теплоёмкости имеет следующий вид:

Знание величин и их символических обозначений, использующихся при расчёте, крайне важно. Однако необходимо не только знать их визуальный вид, но и чётко представлять значение каждого из них. Расчёт удельной теплоёмкости вещества представлен следующими компонентами:

ΔT – символ, означающий постепенное изменение температуры вещества. Символ «Δ» произносится как дельта.

ΔT можно рассчитать по формуле:

  • t1 – первичная температура;
  • t2 – конечная температура после изменения.

m – масса вещества используемого при нагреве (гр).

Q – количество теплоты (Дж/J)

На основании Цр можно вывести и другие уравнения:

  • Q = m*цp*ΔT – количество теплоты ;
  • m = Q/цр*(t2 — t1) – массы вещества;
  • t1 = t2–(Q/цp*m) – первичной температуры;
  • t2 = t1+(Q/цp*m) – конечной температуры.

Инструкция по расчёту параметра

Рассчитать с вещества достаточно просто и чтобы это сделать нужно, выполнить следующие шаги:

  1. Взять расчётную формулу: Теплоемкость = Q/(m*∆T)
  2. Выписать исходные данные.
  3. Подставить их в формулу.
  4. Провести расчёт и получим результат.

В качестве примера произведём расчёт неизвестного вещества массой 480 грамм обладающего температурой 15ºC, которая в результате нагрева (подвода 35 тыс. Дж) увеличилась до 250º.

Согласно инструкции приведённой выше производим следующие действия:

Выписываем исходные данные:

  • Q = 35 тыс. Дж;
  • m = 480 г;
  • ΔT = t2–t1 =250–15 = 235 ºC.

Берём формулу, подставляем значения и решаем:

с=Q/(m*∆T)=35тыс.Дж/(480 г*235º)=35тыс.Дж/(112800 г*º)=0,31 Дж/г*º.

Расчёт

Выполним расчёт CP воды и олова при следующих условиях:

  • m = 500 грамм;
  • t1 =24ºC и t2 = 80ºC – для воды;
  • t1 =20ºC и t2 =180ºC – для олова;
  • Q = 28 тыс. Дж.

Для начала определяем ΔT для воды и олова соответственно:

  • ΔТв = t2–t1 = 80–24 = 56ºC
  • ΔТо = t2–t1 = 180–20 =160ºC

Затем находим удельную теплоёмкость:

  1. с=Q/(m*ΔТв)= 28 тыс. Дж/(500 г *56ºC) = 28 тыс.Дж/(28 тыс.г*ºC) = 1 Дж/г*ºC.
  2. с=Q/(m*ΔТо)=28тыс.Дж/(500 гр*160ºC)=28 тыс.Дж/(80 тыс.г*ºC)=0,35 Дж/г*ºC.

Таким образом, удельная теплоемкость воды составила 1 Дж/г *ºC, а олова 0,35 Дж/г*ºC. Отсюда можно сделать вывод о том, что при равном значении подводимого тепла в 28 тыс. Дж олово нагрется быстрее воды, поскольку его теплоёмкость меньше.

Читать еще:  Как облицевать кирпичом мангал

Теплоёмкостью обладают не только газы, жидкости и твёрдые тела, но и продукты питания.

Как рассчитать теплоемкость продуктов питания

При расчёте емкости питания уравнение примет следующий вид:

  • w – количество воды в продукте;
  • p – количество белков в продукте;
  • f – процентное содержание жиров;
  • c – процентное содержание углеводов;
  • a – процентное содержание неорганических компонентов.

Определим теплоемкость плавленого сливочного сыра Viola. Для этого выписываем нужные значения из состава продукта (масса 140 грамм):

  • вода – 35 г;
  • белки – 12,9 г;
  • жиры – 25,8 г;
  • углеводы – 6,96 г;
  • неорганические компоненты – 21 г.

Затем находим с:

  • с=(4.180*w)+(1.711*p)+(1.928*f)+(1.547*c)+(0.908*a)=(4.180*35)+(1.711*12,9)+(1.928*25,8) + (1.547*6,96)+(0.908*21)=146,3+22,1+49,7+10,8+19,1=248 кДж /кг*ºC.

Полезные советы

Всегда помните, что:

  • процесс нагревания металла проходит быстрее, чем у воды, так как он обладает CP в 2,5 раза меньше;
  • по возможности преобразуйте полученные результаты в более высокий порядок, если позволяют условия;
  • в целях проверки результатов можно воспользоваться интернетом и посмотреть с для расчётного вещества;
  • при равных экспериментальных условиях более значительные температурные изменения будут наблюдаться у материалов с низкой удельной теплоёмкостью.

Видео

Разобраться в этой теме вам поможет видео урок.

Удельная теплоёмкость. Расчёт количества теплоты

Конспект по физике для 8 класса «Удельная теплоёмкость. Расчёт количества теплоты». ВЫ УЗНАЕТЕ: Что такое удельная теплоёмкость. Как вычислить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении.

Удельная теплоёмкость.
Расчёт количества теплоты

Как показывает опыт, чтобы изменить на одну и ту же величину температуру тел одинаковой массы, но состоящих из разного вещества, требуется разное количество теплоты. Например, чтобы увеличить на 1 °С температуру воды массой 1 кг, требуется количество теплоты, равное 4200 Дж, а для нагревания такой же массы подсолнечного масла требуется 1700 Дж.

УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ

Какое количество теплоты потребуется для нагревания на 1 °С воды большей массы, например 2 кг? Для этого необходимо количество теплоты, равное 8400 Дж. Соответственно для нагревания на 1 °С 2 кг подсолнечного масла также потребуется вдвое большее количество теплоты — 3400 Дж.

Этот вывод справедлив не только для жидкостей. Например, для нагревания 1 кг железа на 1 °С необходимо затратить количество теплоты, равное 460 Дж, а для нагревания 2 кг железа — вдвое большее, т. е. 920 Дж.

Таким образом, количество теплоты, необходимое для нагревания тела до определённой температуры, пропорционально массе этого тела.

Вместе с тем количество теплоты, сообщаемое телу при его нагревании, зависит от того, на сколько градусов мы увеличиваем температуру тела.

Например, если 2 кг воды надо нагреть не на 1 °С, а на 10 °С, то, как показывает опыт, для этого потребуется количество теплоты, в 10 раз большее, т. е. 84 000 Дж. Следовательно, количество теплоты пропорционально также разности между конечной и начальной температурами тела:
Δt = t2 — t1.

С учётом сказанного выражение для количества теплоты, необходимого для нагревания тела массой т на Δt, следует записать в виде
Q = cmΔt, (1)
где с — некоторая величина, характеризующая тепловые свойства тела.

Выясним физический смысл величины с. Если массу тела принять равной единице и изменение температуры тела также равно единице, то по формуле (1) величина с численно равна количеству теплоты:
с = Q / mΔt

Эту величину называют удельной теплоёмкостью вещества. Единица удельной теплоёмкости в СИ — джоуль на килограмм • градус Цельсия (Дж/(кг • °С)).

Например, удельная теплоёмкость серебра равна 250 Дж/(кг • °С). Это означает, что для нагревания серебра массой 1 кг на 1 °С необходимо количество теплоты, равное 250 Дж. Точно такое же (по модулю) количество теплоты будет выделено этой массой серебра при его охлаждении на 1 °С.

Опыты показывают, что удельная теплоёмкость одного и того же вещества может считаться постоянной в широком интервале температур. Однако удельная теплоёмкость вещества, находящегося в различных агрегатных состояниях, разная. Например, удельная теплоёмкость воды 4200 Дж/(кг • °С), а удельная теплоёмкость льда 2100 Дж/(кг • °С).

РЕШЕНИЕ ЗАДАЧИ

В алюминиевой кастрюле, имеющей массу 400 г, находится 2 л воды при температуре 20 °С. Какое количество теплоты необходимо для нагревания воды в кастрюле до 100 °С?

Запишем условие задачи и решим её.

Ответ: Q = 701,44 кДж.

Вы смотрели Конспект по физике для 8 класса «Удельная теплоёмкость. Расчёт количества теплоты».

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector