Определение прочности кирпича неразрушающим способом - Ремонт и дизайн от ZerkalaSPB.ru
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение прочности кирпича неразрушающим способом

Определение прочности бетона и кирпичной кладки

Определение соответствия фактической прочности бетона ее проект­ной является основным при оценке состояния железобетонной конструк­ции. Выявить фактическую величину прочности можно несколькими мето­дами: разрушающим, приборами механического действия, неразрушающими.

Разрушающий метод предусматривает отбор образцов с минимальны­ми размерами сторон 70,7×70,7×70,7мм из массива бетонного сооружения с помощью высверливания алмазными коронками или высверливания кернов в виде цилиндров с диаметром 50. 100 мм, а затем испытание этих образ­цов и кернов в лабораторных условиях на прессах в соответствии с ГОСТ 10180-78.

Определение прочности бетона приборами механического действия основывается на положениях ГОСТ 22690.0-88. ГОСТ 22690.4-88 и произ­водится одним из следующих методов: методом упругого отскока, методом пластической деформации, методом отрыва со скалыванием, методам скола углов конструкции. При этом применяются следующие приборы: молоток Кашкарова, эталонный молоток НИИ Мосстроя, приборы пистолетного ти­па ЦНИИСК, склерометры КМ и Шмидта, склерометр СК-1, прибор ПО-1, склерометр ДПГ-4, а также гидравлические пресс-насосы марок ГПНВ-5, ГПНС-4 и анкерные устройства.

Неразрушающие методы используются для оценки прочности бетона и не дают такой точности результатов, как описанные выше. В практике об­следования конструкций чаще всего используют, в основном, импульсный акустический и магнитометрический метод. Согласно ГОСТ 17624-87, для определения прочности материалов и дефектоскопии используют ультра­звуковые приборы: УКБ-1, УКБ-1М, УК-10П, УК-10ПН, УФ-90ПЦ, Бетон-12, УФ-50МЦ.

Ультразвуковой метод определения прочности основан на связи между скоростью распределения ультразвука в бетоне и его прочностью.

По ГОСТ 22904-78 в бетоне можно определить толщину защитного слоя, сечение и расположение арматуры в конструкциях при их обследова­нии. Для этих целей применяют приборы типа ИЗС-1, ИЗС-2, ИЗС-АР, ИЗС-10Н, ИМП и т.п., использующие свойство изменения магнитной проницае­мости при взаимодействии металла с электромагнитным полем.

Каменная кладка не является однородным материалом и ее прочность зависит от ряда факторов: прочности камней, прочности раствора, вида на­пряженного состояния каменной конструкции и др. Прочность каменной кладки наиболее рационально определить косвенно, по установленным маркам раствора и камня, при этом прочность компонентов определяется разрушающими или неразрушающими способами. Для определения проч­ности камня из различных участков каменной конструкции отбирают 10 кирпичей, из которых 5 шт. испытывают на сжатие, а 5 шт. на изгиб. Проч­ность раствора кладки определяется по испытанию не менее десяти образ­цов размерами 30×30 мм, отобранных из горизонтальных швов кладки. По результатам лабораторных испытаний кирпича и раствора определяют предел прочности кирпичной кладки.

Предел прочности камня при сжатии и изгибе определяется согласно методике ГОСТ 8462-85, а для раствора — по методике ГОСТ 5802-86.

Прочность раствора каменной кладки в конструкциях может быть оце­нена методом пластического деформирования с помощью склерометра СД-2. В этом случае она определяется в зависимости от соотношения отпечат­ков на образце и эталоне по тарировочным кривым, построенным по резуль­татам лабораторных испытаний образцов из различных видов раствора.

Прочность каменной кладки может быть оценена с помощью ультразву­кового метода при использовании той же аппаратуры, что и для бетона. Для этого применяют сквозное или поверхностное прозвучивание. При сквозном прозвучивании в поперечном направлении ультразвуковые преобразователи устанавливают с двух сторон простенка соосно друг к другу. При поверхно­стном прозвучивании преобразователи устанавливают на подготовленной по­верхности кирпича с базой 150мм для кирпича и 400мм для кладки.

Правила определения прочности ультразвуковым методом приведены в ГОСТ 24332-80 для камней и силикатного кирпича. При применении им­пульсного акустического метода для определения прочности камня исполь­зуется корреляционная зависимость «прочность камня — акустическое со­противление» (к Ск, где к — плотность камня, Ск — скорость распростра­нения колебаний в камне).

Неразрушающие методы испытания каменной кладки

1. Неразрушающие методы испытания каменной кладки

2. Прочность каменной кладки зависит от прочности камня и раствора. Для определения прочности кирпича из механических приборов, применяемых для контроля прочности бетона, можно использовать те, которые основаны на измерении упругого отскока ударника, в частности прибор Центральной экспериментальной базы ЦНИИСК. Приборы, основанные на получении отпечатков на поверхности испытываемого образца (в том числе эталонный молоток К.П. Кашкарова), для кирпича непригодны, так как его поверхность при ударе разрушается и размер отпечатка нельзя зафиксировать.

3. Прочность раствора в швах можно определить склерометром СД-2. Принцип его действия такой же, как и молотка К.П. Кашкарова, но вместо стального шарика в нем встроен стальной диск диметром 20 мм и толщиной 1 мм. По соотношению размеров отпечатка на растворе и на эталоне с использованием тарировочной кривой (рис. 1.19) находят прочность раствора.

4. В книге /28/ указывается на возможность определения прочности каменных кладок с помощью импульсивного ультразвукового метода. Однако это представляется спорным. Даже в кладке из полнотелого кирпича при отсутствии каналов имеются вертикальные швы, плохо заполненные раствором. Влияние степени заполнения вертикальных швов раствором на прочность кладки незначительное, в то время как для ультразвуковых волн вертикальные швы являются большим препятствием. Наличие каналов в стенах, разных видов кирпича (полнотелого, пустотного со сквозными и несквозными пустотами) приводит к сложной картине распространения ультразвуковых волн, что ставит под сомнение возможность определения прочности кладок ультразвуковым импульсным методом.

5. Этим методом можно выявить наличие каналов и пустот в кладке, найти глубину трещин, оценить прочность отдельных камней.

Читать еще:  Линия по производству жженого кирпича

6. PO0000073’>

7. Рис. 1.19 Тарировочная кривая для определения прочности, раствора склерометром СД-2:

8. 1 — известковый раствор; 2 — цементно-известковый раствор; 3 — цементный раствор

9. Измерение расположения и сечения скрытых стальных конструкций

10. Для определения мест расположения скрытых стальных конструкций и их сечения применяют магнитометрические методы исследования. Для этой цели служат приборы ИСМ (измеритель сечения металла) МИ-1 (металлоискатель).

11. Прибор ИСМ состоит из двух генераторов высокой частоты, усилителя-ограничителя, второго ограничительного каскада, дифференцирующего контура и индикатора. С первым генератором соединен выносной щуп. Второй генератор является эталонным. Индикатором служит микроамперметр М-24. При поиске скрытого металла щуп перемещают в двух взаимно перпендикулярных направлениях на расстоянии 5. 7 см от поверхности конструкции. Наличие металла обнаруживается по отклонению стрелки индикатора. Для определения точного места нахождения металла щупом совершают возвратно-поступательные движения до максимального отклонения стрелки микроамперметра. Положение металла отмечают риской на поверхности конструкции. Прямая соединяющая риски на концах конструкции, представляет собой проекцию оси стальной балки на плоскость конструкции. Для определения сечения стальной балки и расстояния от балки до поверхности конструкции на подвижную планку щупа устанавливают эталонный брусок толщиной 2,5 см. Полученные показатели (без толщины эталонного бруска) записывают в журнал, по таблице, расположенной на внутренней стороне крышки прибора, находят номер профиля балки. Расстояние от поверхности конструкции до балки вычисляют по формуле

12. а=1-b (1.53)

13. где l — эталонное расстояние, мм, определяемое по таблице;

14. b — показания по шкале подвижной системы, мм.

15. Для грубого определения наличия и расположения в конструкциях стальных элементов применяют металлоискатель МИ-1. Индикатором МИ-1 служит динамик. Схема собрана на полупроводниках. В основу МИ-1 положена схема прибора ИСМ. При приближении МИ-1 к металлу звук в динамике меняет тональность, при максимальном приближении звук срывается. Рамку прибора ведут на расстоянии 10. 15 см от поверхности конструкции.

2. Характерные дефекты и повреждения стальных стропильных ферм Основные дефекты и повреждения показаны на рис. 9.1. Наиболее часто наблюдается искривление стержней в плоскости и из плоскости фермы. Большую опасность (из-за возможности потери устойчивости) представляют искривленные сжатые стержни. Если количество искривленных растянутых и сжатых стержней примерно одинаково,


Рис. 9.1. Дефекты и повреждения стропильных ферм:
1 — искривление стержня; 2 — трещина в фасонке; 3 — вмятина; 4 — отсутствие соединительных прокладок; 5 — расцентровка стержней в узле фермы

то можно считать, что эти искривления — дефекты, вызванные остаточными сварочными деформациями, а также случайными механическими воздействиями при перевозке и монтаже ферм. Если больше искривлено сжатых стержней, то это свидетельствует о том, что искривление — результат работы под нагрузкой, и несущая способность поврежденных сжатых стержней не обеспечена. Причиной может быть превышение нагрузок или недостаточное сечение элемента.

Весьма опасным дефектом с угрозой аварии является трещина в фасонке стропильной фермы, которая может появиться при изготовлении, перевозке и монтаже. Условия, способствующие появлению трещины: недостаточный зазор (

Приборы для определения прочности кладки

Собственно интересуют приборы неразрушающего контроля для определения прочности камня и раствора.

Какими кто пользуется, каковы области применения?

Пытался найти на сайте ВНИРа, ничего вразумительного не нашел.
Делать лабораторию не всегда удобно, а оценить прочности раствора и кладки по действующим ГОСТам надо очень часто.

Для кирпича cклерометр типа N (proceq), для раствора склерометр типа Pm!
Можно пользоваться ИПС, но я ему не очень доверяю!

Но в любом случае, если обследование проводится для проектных нужд (с изменением нагрузок), необходимо отбирать образцы и испытывать в прессе!

Shmaysel
Посмотреть профиль
Посетить домашнюю страницу Shmaysel
Найти ещё сообщения от Shmaysel

Формально нет такой необходимости. В СП написано чётко: неразрушающие методы по ГОСТ или разрушающие опять же по ГОСТ.
На практике согласен — только так можно определить реальные характеристики

Не всегда лабораторию делать удобно, а учитывая что каменные конструкции обычно имеют значительный запас по нагрузке, достаточно хотя бы ориентировочное определение марок, скажем М100-М150 для камня и М25-М50 для раствора.

Можно ли «стукачами» добиться такой погрешности? Формально опять же да. А на практике?

И еще один насущный вопрос: как то надо отбивать деньги заказчика, т.к. в техзадании заложена инструменталка

P.S.
Склерометр N — для бетона.
По керамике нашел молоток LB.
Для раствора PM маятниковый насколько я понял?
А для силикатного кирпича?
Как быть с щелевым глиняным кирпичом? Как учесть пустоты?

Shmaysel
Посмотреть профиль
Посетить домашнюю страницу Shmaysel
Найти ещё сообщения от Shmaysel

Да, прочность кладки нынче определять дорого — 1 прибор на керамику. 1 на силикат, 1 на раствор.

Есть ли разница при использовании LB щелевой кирпич или нет?

Кстати обратившись вновь к СП, обратил внимание что про неразрушающие методы для каменных конструкций ДЕЙСТВИТЕЛЬНО ничего не написано . Возникает вопрос, в соответствии с какими ГОСТами производятся измерения всеми этими молотками шмидта. И есть ли такие ГОСТы вообще?

Shmaysel
Посмотреть профиль
Посетить домашнюю страницу Shmaysel
Найти ещё сообщения от Shmaysel

Обследование зданий и сооружений

SomeBody
Посмотреть профиль
Найти ещё сообщения от SomeBody

Написано, что в определенных случаях допускается оценивать неразрушающими методами. А какими не написано .. Оригиналы однако.
Если при обследовании прочность кладки имеет решающее значение — лаборатория.

Читать еще:  Схема производства кирпича полусухим прессованием

SomeBody, Видимо речь о ГОСТ 24332.

Тогда возникает резонный вопрос: на каком основании в РФ реализуются данные склерометры и прочие молотки фидзеля, тарированные на кладку?

Все-таки наверно что-то есть, надо только найти

Обследование зданий и сооружений

У нас в городе есть институт в котором применяют молотки по кладке, так вот они ссылаются при испытаниях на методику разработанную в Лененграде. В которой написано что нужно делать таррировку показаний молотков по испытания на прессе.

А все молотки просто молотят без каких либо на то ГОСТов (точно также по таррировкам в лабораториях своих).

SomeBody
Посмотреть профиль
Найти ещё сообщения от SomeBody

Провел некоторые изыскания по приборам:
1. ИПМ-1Э – бетон , стяжка , строительная керамика. Дешево
2. Beton Pro Condtrol – бетон, раствор, кирпич. Однако название нам как бэ намекает…. Дешево.
3. ОНИКС-2.5 – бетон, “контроль?” кирпича, раствора. Средней ценовой категории.
4. ИПС-МГ4 и ИПС-МГ4+. В чем разница не понял… — бетон, раствор, силикатный и керамический кирпич. При сравнительно низкой цене. (Находка обследователя)
5. УКС-МГ4С – бетон и силикат ультразвуком. Средней ценовой категории.
6. Молоток Шмидта электронный модель PC L – бетон, строительный раствор, камень. Средняя ценовая категория.
7. Молоток Шмидта модель PM – раствор. Дорого.
8. Молоток Шмидта модель LB – из обожженной глины. Средней ценовой категории.
При этом напрашивается следующее,
1. Что касается кладки, ГОСТирован только УКС-МГ4С и только для силиката!
2. В описании к некоторым приборам вероятно, в рекламных целях, добавили кирпич и раствор, а на деле он ничего этого не делает
3. Если реально определяет некие прочностные характеристики кладки, но не по ГОСТу, то какой в этом смысл? Никуда не приложишь

Вот такие пироги

Somebody, ну если продают такие приборы, наверно тарировку производитель делал, график к прибору предоставляют?
Или мне надо покупать молоток, потом самому делать тарировку, строить зависимость и только тогда работать?

Обследование зданий и сооружений

Да вы правы производителе предоставляют тарировки, но они испытывают (скорее всего) кирпич с завода (то есть новый марочный без эксплуатационных дефектов). А вам по хорошему придется еще и самому делать таррировку, но для поверхностной оценки пойдут и зоводские.

SomeBody
Посмотреть профиль
Найти ещё сообщения от SomeBody

Посмотрел на сайте производителя. Отличие в том, что тот что с плюсом сам выдаёт класс бетона, имеется подстветка и помоему к ниму больше тарировочных зависимостей идет

После дальнейших анализов заинтересовали ИПС-МГ4+ и Beton Pro Condtrol. Однако вопрос с применимостью пока остается открытым. Отписал в соответствующие конторы за разъяснениями.
Кое-какие объяснения приведены тут: http://www.stroypribor.ru/produkt/ca. n/beton_3.html внизу страницы.

ЗЫ
ИПМ-1Э не очень хочется, ибо ВНИРовский, а о качестве произведенных ими приборов можно слогать легенды

AntonSpB
Посмотреть профиль
Найти ещё сообщения от AntonSpB

Але, этим прибором определяется прочность сцепления кирпича с раствором.
читаем название ГОСТа

Вобщем разговаривал с директором Челябинского «Стройприбора»
Могу доложить следующее:
1. При неразрушающем контроле при помощи ИПС-МГ4, да и остальными приборами (кроме вырыва со скалыванием)
обязательно надо делать уточнение базовой тарировочной зависимости. Например делать 3-5 скалываний, затем стучать, строить фактический график и вносить изменения. (касается и бетона)
2. Прочность растворных швов кладки не определяет за счет того, что шов утоплен на несколько мм и ссотв. энергия удара будет другая + неровная поверхность самого шва. Можно стучать стяжку, штукатурку и т.д.

Соответственно смысл применять приборы есть когда параллельно делаешь вырыв со скалыванием. Например при больших объёмах работ (сделал по 3 вырыва на каждом участке и обстучал по выявленной тарировочной зависимости).
В заключении предоставлять акт сверки.

Полное меню
Основные ссылки

На правах рекламы:

Вернуться в «Каталог СНиП»

ГОСТ 8462-85 Материалы стеновые. Методы определения пределов прочности при сжатии и изгибе.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МЕТОДЫ ОПРЕДЕЛЕНИЯ ПРЕДЕЛОВ ПРОЧНОСТИ
ПРИ СЖАТИИ И ИЗГИБЕ

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ СТРОИТЕЛЬСТВА

Министерством промышленности строительных материалов СССР Центральным научно-исследовательским институтом строительных конструкций им. В.А. Кучеренко (ЦНИИСК им. Кучеренко) Госстроя СССР

А.С. Бычков, канд. техн. наук (руководитель темы); В.А. Елин, канд. техн. наук; Г.Н. Бабикова; Н.И. Ярославский; В.К. Мухина; В.А. Камейко, канд. техн. наук; Л. В. Дробинина

ВНЕСЕН Министерством промышленности строительных материалов СССР

Зам. министра В.И. Чирков

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по делам строительства от 18 января 1985 г. № 11.

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения пределов прочности при сжатии и изгибе

Wall materials. Methods for determination of
ultimate compressive and bending strength

ГОСТ
8462-85

Взамен
ГОСТ 8462-75

Постановлением Государственного комитета СССР по делам строительства от 18 января 1985 г. № 11 срок введения установлен

Несоблюдение стандарта преследуется по закону

Настоящ ий стандарт распространяется на стеновые материалы и устанавливает методы определения предела прочности при сжатии керамического, силикатного кирпича и камней, стеновых камней бетонных и из горных пород, стеновых блоков из природного камня и предела прочности при изгибе керамического и силикатного кирпича.

1 . АППАРАТУРА И МАТЕРИАЛЫ

1.1 . Пресс гидравлический по ГОСТ 8905-82.

1.2 . Линейка измерительная металлическая по ГОСТ 427-75 .

Читать еще:  Расход сырья для производства кирпича

1.4 . Штангенциркуль по ГОСТ 166 -80.

1.5 . Щуп по ГОСТ 882-75.

1.6 . Сито с сеткой 1,25К по ГОСТ 3584-73.

1.7 . Пластина металлическая или стеклянная размерами 270×150×5 мм. Отклонение от плоскостности пластин не должно превышать 0,1 мм.

1.9 . Пластина резинотканевая толщиной 5 — 10 мм по ГОСТ 7338 -77.

1.10 . Картон толщиной 3 — 5 мм по нормативно-технической документации, утвержденной в установленном порядке.

1.11 . Бумага оберточная по ГОСТ 8273-75 .

1.13 . Песок кварцевый по ГОСТ 8736 -77.

1.14 . Портландцемент, портландцемент с минеральными добавками, шлакопортландцемент марки 400 по ГОСТ 10178 -76.

1.15 . Гипсовое вяжущее марки Г-16 по ГОСТ 125-79 .

2 . ПОДГОТОВКА К ИСПЫТАНИЮ

2.1 . Образцы для испытания отбирают от партии. Размер партии и число образцов, подлежащих испытанию для определения пределов прочности при сжатии и изгибе, устанавливают нормативно-технической документацией на соответствующие виды стеновых материалов, утвержденной в установленном порядке.

2.2 . Образцы, отобранные во влажном состоянии, перед испытанием выдерживают не менее 3 сут в закрытом помещении при температуре (20 + 5) °С или подсушивают в течение 4 ч при температуре (105 ± 5) °С. Образцы, содержащие гипс, сушат в течение 8 ч при температуре, не превышающей 50 °С.

2.3 . Кирпич, камни и блоки, отобранные для испытания, по внешнему виду и размерам должны удовлетворять требованиям нормативно-технической документации на эти материалы, утвержденной в установленном порядке.

2.4 . Предел прочности при сжатии кирпича определяют на образцах, состоящих из двух целых кирпичей или из двух его половинок, а предел прочности при сжатии камней определяют на целом камне. Кирпич делят на половинки распиливанием или раскалыванием в соответствии со схемой, приведенной в рекомендуемом приложении 1 .

Допускается определять предел прочности при сжатии на половинках кирпича, полученных после испытания его на изгиб.

Кирпичи или его половинки укладывают постелями друг на друга. Половинки размещают поверхностями раздела в противоположные стороны.

2.5 . При подготовке образцов выравниванию подлежат поверхности, которые в конструкции располагаются перпендикулярно направлению сжимающей нагрузки.

2.6 . Образцы из керамического кирпича и камня пластического формования изготавливают, соединяя части образца и выравнивая их опорные поверхности цементным раствором в соответствии с обязательным приложением 2 .

Образцы из силикатного кирпича и камня и керамического кирпича полусухого прессования испытывают насухо, не производя выравнивания их поверхностей цементным раствором.

2.7 . Предел прочности при сжатии бетонных камней определяют на целом камне. Опорные поверхности образцов выравнивают цементным раствором, если их отклонение от плоскостности превышает 0,3 мм.

2.8 . Предел прочности при сжатии камней из горных пород и блоков из природного камня определяют на образцах, размеры которых указаны в нормативно-технической документации на эти виды стеновых материалов, утвержденной в установленном порядке. Опорные поверхности образцов выравнивают шлифованием или цементным раствором. Отклонение от плоскостности шлифованных поверхностей образцов не должно превышать 0,1 мм.

2.9 . Допускается при определении предела прочности при сжатии керамического кирпича и камней пластического формования изготавливать образцы, выравнивая их опорные поверхности шлифованием, гипсовым раствором или применяя прокладки из технического войлока, резинотканевых пластин, картона и других материалов.

Образцы, изготовленные с применением гипсового раствора, испытывают не ранее чем через 2 ч после начала схватывания. Толщина слоя раствора должна быть не более 5 мм, водогипсовое отношение 0,32 — 0,35.

В случае проверки потребителем, а также при арбитражных проверках образцы для определения предела прочности при сжатии кирпича и камней пластического формования изготовляют в соответствии с п. 2.6 .

2.10 . Предел прочности при изгибе керамического и силикатного кирпича определяют на целом кирпиче.

В местах опирания и приложения нагрузки поверхность кирпича пластического формования выравнивают цементным или гипсовым раствором, шлифованием или применяют прокладки по п. 2.9 . Кирпич с несквозными пустотами устанавливают на опорах так, чтобы пустоты располагались в растянутой зоне образца.

Силикатный кирпич и керамический кирпич полусухого прессования испытывают на изгиб без применения растворов и прокладок.

3 . ПРОВЕДЕНИЕ ИСПЫТАНИЙ

3.1 . Образцы измеряют с погрешностью до 1 мм. Каждый линейный размер образца вычисляют как среднее арифметическое значение результатов измерений двух средних линий противолежащих поверхностей образца.

Диаметр цилиндра вычисляют как среднее арифметическое значение результатов четырех измерений: в каждом торце по двум взаимно перпендикулярным направлениям.

3.2 . Испытание образцов на сжатие

На боковые поверхности образца наносят вертикальные осевые линии. Образец устанавливают в центре плиты пресса, совмещая геометрические оси образца и плиты, и прижимают верхней плитой пресса.

Нагрузка на образец, должна возрастать непрерывно и равномерно со скоростью, обеспечивающей его разрушение через 20 — 60 с после начала испытания.

3.2.1 . Предел прочности при сжатии R сж , МПа (кгс/см 2 ), образца вычисляют по формуле

( 1 )

где Р — наибольшая нагрузка, установленная при испытании образца, МН (кгс);

F — площадь поперечного сечения образца, вычисляемая как среднее арифметическое значение площадей верхней и нижней его поверхностей, м 2 (см 2 ).

При вычислении предела прочности при сжатии образцов из двух целых кирпичей толщиной 88 мм или из двух их половинок результаты испытаний умножают на коэффициент 1,2.

При вычислении пределов прочности при сжатии образцов-кубов и образцов-цилиндров из природного камня результаты испытаний умножают на коэффициент, указанный в таблице.

Разм е р ребра куба или диаметра d и высоты h цилиндра ( d = h ), мм

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector