Как кирпич проводит тепло - Ремонт и дизайн от ZerkalaSPB.ru
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как кирпич проводит тепло

Теплопроводность кирпича

При возведении построек из какого-либо материала, наиболее значимыми являются показатели его прочности (несущей способности) и теплопроводности. Первый определяет максимальные допустимые нагрузки, что напрямую влияет на этажность строения, выбор материалов кровли и другие моменты. Второй фактор определяет степень теплоизоляции, которая будет обеспечена внутри помещения.

Так как на большей части территории нашей страны, нередко, случаются минусовые температуры, фактор теплопроводности имеет огромное значение при возведении стеновых конструкций. Главный принцип при этом следующий: чем выше теплопроводность материала, тем лучше он передает тепло, следовательно, тем больше должна быть толщина стен, чтобы обеспечить приемлемый уровень теплоизоляции.

Вместе с тем, при увеличении толщины стен, растет расход материалов, а это – увеличение стоимости постройки.

Поэтому важно знать точный показатель теплопроводности стенового материала, чтобы подобрать оптимальную ширину стены, как с точки зрения теплоизоляции, так и с точки зрения финансовых затрат.

Теплопроводность кирпича указывается в справочной литературе в виде коэффициента теплопроводности, который показывает количество тепла, проходящего через квадратный метр материала (толщиной в 1 метр) за определенную единицу времени (секунду). Чем выше коэффициент теплопроводности, тем лучше материал передает тепло, и тем ниже его теплоизоляционные свойства.

Как известно, понятие «кирпич» включает в себя различные типы данного изделия. Разные виды кирпича изготавливаются из разных материалов и имеют различные конструкционные особенности. В нашем случае, принципиальное значение имеет – пустотелый кирпичи или полнотелый. В связи с тем, что теплопроводность разреженных сред (газов) ощутимо ниже, чем твердых, наличие полостей внутри кирпича снижает его теплопроводность.

К несчастью, при этом падают и его прочностные свойства, так что кирпич с высокой долей пустот внутри редко используется для возведения несущих стен. Зато нет никаких препятствия для использования его в качестве внешней облицовки, не играющей важной конструкционной роли.

Рассмотрим теплопроводность кирпича для различных его типов (указан коэффициент теплопроводности):

  • Клинкерный: 0,8-0,9;
  • Полнотелый силикатный: 0,7-0,8;
  • Силикатный с полостями: 0,66;
  • Полнотелый керамический («обычный»): 0,5-0,8 (такой большой разброс обуславливается разными типами глины, используемыми в производстве);
  • Керамический с пустотами: 0,57;
  • Щелевой силикатный: 0,4;
  • Щелевой керамический: 0,34-0,43;
  • Кирпич с порами: 0,22;
  • Блоки «теплой керамики»: 0,11.

Как видите, теплопроводность обычного стандартного кирпича не так уж плоха, если сравнивать с силикатным. Впрочем, для сравнения, теплопроводность пенопласта – 0,036, что примерно в 14 раз меньше.

В связи с появлением новых материалов, в последнее время, в строительстве практикуется создание многослойных стен. Несущую функцию в этом случае выполняет прочный полнотелый кирпич, а функция теплоизоляции ложится на специальный изоляционный материал (например, те же панели пенопласта) и на облицовочную стену. Последнюю уже выполняют из пустотелых типов кирпича.

Сравнение теплопроводности строительных материалов

Любой человек согласится, что дома должно быть всегда уютно: летом не жарко, зимой – тепло. За сохранение тепла и прохлады «отвечает» показатель теплопроходимости. Чем лучше перегородка проводит, то есть отдает тепло, тем быстрее он будет остывать и нагреваться. Стены и крыша дома должны иметь низкую проводность, а некоторые элементы, например, радиаторные батареи, могут быть хорошими проводниками. Узнать теплопроводность бетона и других смесей и блоков можно по таблицам или рассчитать по формуле.

  1. Что это такое
  2. Особенности выбора на основе этих показателей
  3. Влияющие факторы
  4. Коэффициент материалов из бетона
  5. Сравнение строительных материалов по толщине

Что это такое

Теплопроводность строительных материалов играет важную роль при их выборе. Термин означает количество тепла, которое разные перегородки одинаковой толщины могут провести за единицу времени. Чем ниже показатель, тем хуже тепло проходит – плоскость плохо нагревается и медленно остывает.

Коэффициент проницаемости показывает, сколько тепла может пройти через 1 метр метровой стены при разнице температур в 1 градус. Единицей измерения является Вт/(м*С), где м – это метры, а С – градус Цельсия.

В зависимости от значения стройматериалы используют для разных целей: с низкой проводимостью применяют для утепления, чтобы дома не было холодно, с высокой – для отвода тепла и быстрого охлаждения, например, для батарей.

Обратите внимание! Плоскости с низким значением будут медленнее остывать. Это позволит сэкономить на отоплении.

Тепловое или термическое сопротивление – это величина, обратная теплопроходимости. Она отражает, насколько сильно перегородка мешает прохождению тепла. То есть чем выше сопротивление, тем ниже проводность – этот стройматериал можно использовать для утепления. Формула для расчета сопротивления

  • R – нормативное температурное сопротивление.
  • H – толщина в метрах.
  • λ – значение проводимости.

Величина измеряется в (м*С)/Вт, где м – метр, С- градус Цельсия.

Особенности выбора на основе этих показателей

Чтобы построить хороший, прочный дом важно не забывать про теплопроницаемость стен и потолков. Увидеть важность этого свойства можно в простом примере: стена из бетона толщиной в 30 сантиметров и перегородка из кирпича в 50 см одинаково справляются с теплопотерей. Плита из железобетона должна быть примерно в 3 раза толще плиты из керамзитобетона.

При выборе стоит помнить не только о показателе конкретного материала, но и об используемом утеплителе. Например, показатель пенополистирола – 0,031-0,05 Вт/(м*С), изолона – 0,031-0,037 Вт/(м*С). Для сравнения: теплопроводность железобетона плотностью 2,5 тонны на куб. метр – 1,7, а дерева – 0,2-0,23.

Стоит отметить, зачем вообще нужно определять этот показатель при строительстве. Специалистами рассчитана норма для разных климатических поясов России и для разных мест: для стен, крыш, перекрытий. Если выбранные стройматериалы не дотягивают до нормы СНиП, их необходимо утеплить.

Обратите внимание! Если при строительстве использовались несколько стройматериалов в одном месте (например, для крыши или пола), для определения итогового коэффициента все значения складываются.

Влияющие факторы

Если сравнить свойства одного и того же стройматериала в разных условиях, легко увидеть, что теплоизоляционный коэффициент будет разным. Различается величина также у разных марок, причем разница может быть довольно значимой.

Читать еще:  После прошивки micromax кирпич

На проводимость влияют следующие факторы:

  1. Плотность. При высокой плотности частицы расположены близко друг от друга, следовательно, передача тепла будет происходить довольно быстро. Легкие стройматериалы (например, керамзит) хуже отдают тепло, чем тяжелые.
  2. Пористость. Чем она выше, тем меньше тепла пропускается. Воздух отличается маленькой проводимостью, значит, чем больше отверстий в поверхности, тем слабее будет теплопередача.
  3. Структура самих пор. Большие, сообщающиеся между собой поры повышают проницаемость бетонной перегородки. Чтобы сохранить тепло внутри, лучше выбирать мелкие, замкнутые отверстия.
  4. Влажность. При намокании бетона или кирпича воздух вытесняется, заменяется жидкостью или становится влажным воздухом. Коэффициент увеличивается почти в 20 раз.
  5. Температура. Чем она выше, тем выше коэффициент.

Обратите внимание! Зимой, когда влага превращается в лед, теплопотери увеличиваются еще сильнее. Кроме того, промерзание ведет к разрушению.

Коэффициент материалов из бетона

Бетонный раствор – это неоднородная цементно-песчаная смесь, которая имеет сложную структуру. Его коэффициент зависит от конкретного состава.

Узнать теплопроводность бетона можно по таблицам или по характеристике конкретной марки. Средние значения следующие:

  1. Теплопроводность железобетонной плиты плотностью 2,5 – 1,7.
  2. Пенобетона – 0,08-0,29.
  3. Керамзитобетона – 0,14-0,66.
  4. Красный глиняный кирпич – 0,56.
  5. Силикатный кирпич – 0,7.
  6. Блоков из газосиликата – 0,072-0,165.
  7. Теплопроводность штукатурки – 0,1-1.

Точные данные теплопроводности бетонной стены зависят от конкретных марок и их характеристик.

Сравнение строительных материалов по толщине

Таблица теплопроводности строительных материалов позволит быстро просчитать, хватает ли коэффициента перекрытия, а также найти необходимую толщину. Также можно воспользоваться онлайн калькулятором на сайтах строительных материалов.

Обратите внимание! В таблицах зачастую присутствует не одно значение теплопроницаемости, а несколько. Основное дается для сухого стройматериала при испытании в лабораторных условиях по ГОСТу, другие – для различных условий эксплуатации, например, при сухом и влажном воздухе, при разных температурах.

Для самостоятельного расчета толщины стены можно воспользоваться формулой:

Показание R можно узнать в таблице «Строительная климатология», в которой для каждого региона даны свои значения. Показания λ даны в технических характеристиках материала.

Для Москвы R составляет 3,28. Если перегородки будут выполнены из железобетона (плотность 2,5 т/ куб. м, λ= 1,690), их толщина должна составить больше 5,5 метра.

Если взять керамзитобетон плотностью 1,8 т/куб. м. (λ = 0,66), величина «снизится» до 2,16 метров. Для пенобетона плотностью 1 т/куб. м. (λ = 0,29), размер составит меньше метра – 95 см.

Легко увидеть, что, чем выше показатель проводимости тепла, тем больше должна быть толщина. Чтобы уменьшить эту величину, их дополнительно оббивают более тонкими утеплителями.

При выборе материала для пола, стены, крыши или перегородки стоит обратить внимание на теплопроводность стройматериалов. Эта величина отвечает за проведение тепла через материал, то есть за то, как быстро будет нагреваться и остывать дом. Чем она ниже, тем хуже проходит тепло и тем медленнее здание будет промерзать.

Сравнение арболитовых блоков и газобетона — что лучше

Сравнение характеристик кирпича и газобетона

Технология алмазной резки для бетонных стен

Сколько надо цемента чтобы сделать на 1 м3 бетона

Теплопроводность

Теплопрово́дность — способность материальных тел проводить энергию от более нагретых частей тела к менее нагретым частям тела путём хаотического движения частиц тела (атомов, молекул, электронов и т. п.). Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества.

Различают стационарный и нестационарный процессы теплопроводности в твердом теле. Стационарный процесс характеризуется неизменными во времени параметрами процесса. Такой процесс устанавливается при длительном поддержании температур теплообменивающихся сред на одном и том же уровне. Нестационарный процесс представляет собой неустановившийся тепловой процесс в телах и средах, характеризуемый изменением температуры в пространстве и во времени.

Теплопроводностью называется также количественная характеристика способности тела проводить тепло. В сравнении тепловых цепей с электрическими это аналог проводимости.

Количественно способность вещества проводить тепло характеризуется коэффициентом теплопроводности. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Исторически считалось, что передача тепловой энергии связана с перетеканием гипотетического теплорода от одного тела к другому. Однако с развитием молекулярно-кинетической теории явление теплопроводности получило своё объяснение на основе взаимодействия частиц вещества. Молекулы в более нагретых частях тела движутся быстрее и передают энергию посредством столкновений медленным частицам в более холодных частях тела.

Содержание

  • 1 Закон теплопроводности Фурье
    • 1.1 Связь с электропроводностью
    • 1.2 Коэффициент теплопроводности газов
    • 1.3 Теплопроводность в сильно разреженных газах
  • 2 Обобщения закона Фурье
  • 3 Коэффициенты теплопроводности различных веществ
  • 4 Примечания
  • 5 См. также
  • 6 Ссылки
Читать еще:  Прочность кирпич или шлакоблок

Закон теплопроводности Фурье [ править | править код ]

В установившемся режиме плотность потока энергии, передающейся посредством теплопроводности, пропорциональна градиенту температуры:

q → = − ϰ g r a d ⁡ T >=-varkappa mathop > T>

где q → >> — вектор плотности теплового потока — количество энергии, проходящей в единицу времени через единицу площади, перпендикулярной каждой оси, ϰ коэффициент теплопроводности (удельная теплопроводность), T — температура. Минус в правой части показывает, что тепловой поток направлен противоположно вектору grad ⁡ T > T> (то есть в сторону скорейшего убывания температуры). Это выражение известно как закон теплопроводности Фурье. [1]

В интегральной форме это же выражение запишется так (если речь идёт о стационарном потоке тепла от одной грани параллелепипеда к другой):

P = − ϰ S Δ T l , >,> P = − Вт м ⋅ К ⋅ м 2 ⋅ К м = Вт > over <>cdot >>>cdot <<>^<2>cdot >> over >>=>>

где P — полная мощность тепловой передачи, S — площадь сечения параллелепипеда, Δ T — перепад температур граней, l — длина параллелепипеда, то есть расстояние между гранями.

Связь с электропроводностью [ править | править код ]

Связь коэффициента теплопроводности ϰ с удельной электрической проводимостью σ в металлах устанавливает закон Видемана — Франца:

ϰ σ = π 2 3 ( k e ) 2 T , >=><3>>left(>right)^<2>T,> где k — постоянная Больцмана, e — заряд электрона, T — абсолютная температура.

Коэффициент теплопроводности газов [ править | править код ]

В газах коэффициент теплопроводности может быть найден по приближённой формуле [2]

ϰ ∼ 1 3 ρ c v λ v ¯ , <3>>rho c_lambda >,>

где ρ — плотность газа, c v > — удельная теплоёмкость при постоянном объёме, λ — средняя длина свободного пробега молекул газа, v ¯ >> — средняя тепловая скорость. Эта же формула может быть записана как [3]

ϰ = i k 3 π 3 / 2 d 2 R T μ , <3pi ^<3/2>d^<2>>>>>,>

где i — сумма поступательных и вращательных степеней свободы молекул (для двухатомного газа i = 5 , для одноатомного i = 3 ), k — постоянная Больцмана, μ — молярная масса, T — абсолютная температура, d — эффективный (газокинетический) диаметр молекул, R — универсальная газовая постоянная. Из формулы видно, что наименьшей теплопроводностью обладают тяжелые одноатомные (инертные) газы, наибольшей — легкие многоатомные (что подтверждается практикой, максимальная теплопроводность из всех газов — у водорода, минимальная — у радона, из нерадиоактивных газов — у ксенона).

Теплопроводность в сильно разреженных газах [ править | править код ]

Приведённое выше выражение для коэффициента теплопроводности в газах не зависит от давления. Однако если газ сильно разрежен, то длина свободного пробега определяется не столкновениями молекул друг с другом, а их столкновениями со стенками сосуда. Состояние газа, при котором длина свободного пробега молекул ограничивается размерами сосуда называют высоким вакуумом. При высоком вакууме теплопроводность убывает пропорционально плотности вещества (то есть пропорциональна давлению в системе): ϰ ∼ 1 3 ρ c v l v ¯ ∝ P <3>>rho c_l>propto P> , где l — размер сосуда, P — давление.

Таким образом коэффициент теплопроводности вакуума тем ближе к нулю, чем глубже вакуум. Это связано с низкой концентрацией в вакууме материальных частиц, способных переносить тепло. Тем не менее, энергия в вакууме передаётся с помощью излучения. Поэтому, например, для уменьшения теплопотерь стенки термоса делают двойными, серебрят (такая поверхность лучше отражает излучение), а воздух между ними откачивают.

Обобщения закона Фурье [ править | править код ]

Следует отметить, что закон Фурье не учитывает инерционность процесса теплопроводности, то есть в данной модели изменение температуры в какой-то точке мгновенно распространяется на всё тело. Закон Фурье неприменим для описания высокочастотных процессов (и, соответственно, процессов, чьё разложение в ряд Фурье имеет значительные высокочастотные гармоники). Примерами таких процессов являются распространение ультразвука, ударные волны и т. п. Инерционность в уравнения переноса первым ввел Максвелл [4] , а в 1948 году Каттанео был предложен вариант закона Фурье с релаксационным членом: [5]

τ ∂ q ∂ t = − ( q + ϰ ∇ T ) . >>=-left(mathbf +varkappa ,nabla Tright).>

Если время релаксации τ пренебрежимо мало, то это уравнение переходит в закон Фурье.

Коэффициенты теплопроводности различных веществ [ править | править код ]

МатериалТеплопроводность, Вт/(м·K)
Графен4840 ± 440 — 5300 ± 480
Алмаз1001—2600
Графит278,4—2435
Арсенид бора [en]200—2000
Карбид кремния490
Серебро430
Медь401
Оксид бериллия370
Золото320
Алюминий202—236
Нитрид алюминия200
Нитрид бора180
Кремний150
Латунь97—111
Хром107
Железо92
Платина70
Олово67
Оксид цинка54
Сталь нелегированная47—58
Свинец35,3
Титан21,9
Сталь нержавеющая (аустенитная) [6]15
Кварц8
Термопасты высокого качества5—12 (на основе соединений углерода)
Гранит2,4
Бетон сплошной1,75
Бетон на гравии или щебне из природного камня1,51
Базальт1,3
Стекло1—1,15
Термопаста КПТ-80,7
Бетон на песке0,7
Вода при нормальных условиях0,6
Кирпич строительный0,2—0,7
Силиконовое масло0,16
Пенобетон0,05—0,3
Газобетон0,1—0,3
Древесина0,15
Нефтяные масла0,12
Свежий снег0,10—0,15
Пенополистирол (горючесть Г1)0,038—0,052
Экструдированный пенополистирол (горючесть Г3 и Г4)0,029—0,032
Стекловата0,032—0,041
Каменная вата0,034—0,039
Пенополиизоцианурат (PIR)0,023
Пенополиуретан (поролон)0,029-0,041
Воздух (300 K, 100 кПа)0,022
Аэрогель0,017
Диоксид углерода (273—320 K, 100 кПа)0,017
Аргон (240—273 K, 100 кПа)0,015
Вакуум (абсолютный)0 (строго)
Читать еще:  Химический анкер для кирпича как выбрать

Также нужно учитывать передачу тепла из-за конвекции молекул и излучения. Например, при полной нетеплопроводности вакуума, тепловая энергия передаётся излучением (Солнце, инфракрасные теплогенераторы). В газах и жидкостях происходит перемешивание разнотемпературных слоёв естественным путём или искусственно (примеры принудительного перемешивания — фены, естественного — электрочайники). Также в конденсированных средах возможно «перепрыгивание» фононов из одного твердого тела в другое через субмикронные зазоры, что способствует распространению звуковых волн и тепловой энергии, даже если зазоры представляют собой идеальный вакуум.

Какой кирпич обыкновенный или пористый обеспечит лучшую теплоизоляцию

Каждому человеку хочется, чтобы дом был теплым и надежным. Рано или поздно у обывателя встанет вопрос: какой кирпич обыкновенный или пористый обеспечит лучшую теплоизоляцию?

Современный рынок пестрит материалами для строительства дома и дачи. Обычный человек, решивший построить дом, сталкивается с трудностями при выборе материала для возведения стен.

Как с ними справиться и какой материал лучше выбрать — об этом расскажет наша статья.

  • 1 Что такое теплопроводность кирпича
    • 1.1 Виды кирпичей
      • 1.1.1 Полнотелый
      • 1.1.2 Пустотелый
      • 1.1.3 Силикатный блок
      • 1.1.4 Шамотный
    • 1.2 Блоки для строительства стен
    • 1.3 Какой кирпич лучше для звукоизоляции стен
    • 1.4 Как рассчитать ТЕПЛОПРОВОДНОСТЬ ДОМА самому

Что такое теплопроводность кирпича

Теплопроводность — это физический процесс передачи тепловой энергии от более нагретого тела к холодному. Если вспомнить школьный предмет физику, то станет ясно, что процесс теплоотдачи происходит непрерывно, пока не сравняется температура отдающего и принимающего тепло предмета.

Важный показатель процесса — коэффициент теплопроводности. Обозначается он греческой буквой λ(лямбда). Отыскать ее можно в строго специальных справочниках.

Теплопроводность кирпича зависит от нескольких факторов:

  • Пористость материала — важный фактор, который обеспечивает теплопроводность. В порах, содержится воздух, который обладает плохой теплопроводностью и, следовательно, дольше сохраняет тепло.
  • Влажность материала — от нее тоже зависит сохранение тепла. Влажный пористый кирпич обладает большей теплопроводностью.
  • Наличие добавок. В некоторый материал вносятся различные синтетические или органические добавки.

Виды кирпичей

Современная отрасль строительства выпускает брикеты разных видов: керамический, силикатный, шамотный.

Отдельно идет пеноблок, газоблок и шлакоблок. Керамический кирпич достаточно распространенный. Изготавливается он из красной глины.

Виды керамического брикета по способу изготовления:

  • полнотелый
  • пустотелый
Полнотелый

Полнотелый кирпич изготавливается из сплошного куска глины. Такие камни известны еще со времен Древнего Египта.

Полнотелый камень отличается высокой теплоотдачей. Коэффициент теплопроводности материала 0,6-0,7 Вт/м*К.

Пустотелый

В последнее время наиболее распространен пустотелый кирпич. Он сделан с большим количеством вертикальных пустот.

Пустоты служат для уменьшения массы кирпича и сохранения тепла. В пустотах скапливается воздух, именно он задерживает процесс теплоотдачи из теплой квартиры в холодную улицу.

Показатель теплопроводности – 0,34-0,43 Вт/м*К. Воздух в пустотах выполняет изолирующую роль, он сохраняет тепло- и звукоизоляцию.

При оценке теплозащиты материалов пустотелый брикет лидирует по всем позициям.

Сноска: при строительстве стены дома, важно обратить внимание на укладку раствора.

Если все щели закидать раствором, соответственно теплоизоляция дома будет хуже, отдача тепла будет быстрее.

Чтобы этого не произошло между рядами кладки устанавливают мелкую металлическую или пластиковую сетку.

Силикатный блок

Силикатный блок изготавливается из смеси песка, извести и добавок. Бывает полнотелый и щелевой.

Обладает высокой теплоотдачей, помещения из такого кирпича будут холодные и требуют дополнительного утепления. Силикатный кирпич быстро сыреет и разрушается, он не такой надежный, как керамический.

Щелевой силикатный брикет изготавливается с вертикальными щелями. Теплоудерживающие свойства щелевого силикатного кирпича лучше, чем полнотелого.

Шамотный

Шамотный — относят к огнеупорным кирпичам. Такой камень хорошо выдерживает высокие температурные нагрузки и не разрушается.

Используется преимущественно для выкладки каминов, мангалов, печей, бань и других сооружений с большими перепадами температур.

Стоимость шамотного брикета значительно выше. В состав брикета входят огнеупорные вещества, и изготавливается он из огнеупорной шамотной глины.

Одна из характеристик шамотного камня — зернистость. Именно она влияет на показатель теплопроводности. Шамотный кирпич теплее, чем силикатный.

Он реже применяется в строительстве, из-за высокой стоимости и сложности в обработке. Для укладки брикета необходим специальный раствор.

Итак, если искать ответ на вопрос какой кирпич обыкновенный или пористый обеспечит лучшую теплоизоляцию, то видно, что пористый кирпич намного эффективнее.

Блоки для строительства стен

Для строительства стен применяется еще такой материал, как пеноблок, газоблок и шлакоблок.

Все блоки обладают хорошей термоизоляцией, особенно газоблок, но у них есть ряд недостатков.

Газоблок и пеноблок не достаточно прочный материал и легко разрушается. Шлакоблок обильно впитывает влагу.

Какой кирпич лучше для звукоизоляции стен

Все хотят жить в спокойном, мало шумном месте. Звукоизоляция стен важный фактор при строительстве дома.

Какой кирпич обыкновенный или пористый обеспечивает лучшую звукоизоляцию стен и почему?

В пористых кирпичах воздух находится в замкнутом пространстве. Такие кирпичи гораздо лучше для звукоизоляции стен.

Важно обратить внимание, чтобы кладка стены была без щелей, отверстий и так далее.

К таким стенам придется применить дополнительную звукоизоляцию.

Как рассчитать ТЕПЛОПРОВОДНОСТЬ ДОМА самому

  • Главная
  • Отделка

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector