26 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Разработка структурной схемы робота пылесоса на ардуино

Робот на Ардуино и машинка на Bluetooth своими руками

Робот – машинка на Ардуино становятся одним из самым популярных инженерных проектов в школьной робототехнике. Именно с таких устройств, автономных или управляемых со смартфона и bluetooth, начинается путь в робототехнику “после Lego”. К счастью, сегодня можно без труда купить все необходимые компоненты и достаточно быстро создать своего первого робота для езды по линии или объезда препятствий. В этой статье вы найдете подробную видео инструкцию как сделать продвинутый автомобиль Arduino Car своими руками, с питанием, датчиками линии, расстояния и управлении через bluetooth.

Робот на ардуино своими руками

В отличие от других проектов, создание робота – автомобиля (Arduino Car) требует понимания и навыков работы сразу с несколькими важными компонентами, поэтому не стоит приступать к созданию машинок без получения базовых навыков работы с платформой Arduino. В любом случае, вам нужно будет но только подключить готовые модули, но и собрать конструкцию, шасси с двигателями, обеспечить правильное питание и управление. Все это потребует определенного терпения.

Робот машина на Ардуино

Вот список ключевых компонентов, которые обязательно встретятся в проекте.

Контроллер Ардуино

Куда уж без него, если мы говорим о проектах на этой платформе. Как правило, роботы машины делают на базе плат Arduino Uno и Nano. Mega будут слишком большие, Pro Mini сложнее подключать к компьютеру и соединять с остальными компонентами, а Leonardo требуют дополнительных навыков в программировании, они дороже и их основное преимущество (тесная интеграция с компьютером в качестве периферийного устройства) в данном случае не слишком востребована.

Есть еще вариант использования плат ESP8266 или ESP32, тогда в проекте появляется возможность управления машиной через WiFi. Но и сами платы и их программирование требует определенных навыков, в этой статье мы будем говорить преимущественно об Uno или Nano.

Конструкция, шасси и двигатели робота на Ардуино

Для того, чтобы что-то поехало или стало перемещаться, надо снабдить “это” колесами, гусеницами или манипуляторами-ногами. Вот тут выбор совершенно не ограничен, можно использовать совершенно любые комбинации и сочетания платформ. Как правило, в качестве начального варианта берутся уже готовые наборы платформ с Алиэкспресс.

Двигатель, шасси и колеса машинки на ардуино

Если работать со стандартными наборами вам не интересно, можно создать платформу своими руками. Например, разобрать игрушечные радиоуправляемые машинки или любые двигатели на 5-12 вольт, с редукторами или без. Колеса можно создать и самим, что тоже является интересной задачей.

Драйвер двигателей

Ардуино – достаточно ранимое устройство, не терпящее больших нагрузок по току. Соединяя его с “брутальными” мощными двигателями, не избежать беды. Поэтому для нормальной совместной работы нам нужно будет включить в схему робота компонент, отвечающий за управление двигателями – подающий и отключающий ток на их обмотки. Речь идет о микросхеме или готовом модуле, которые называют драйвером двигателя. На нашем сайте есть статьи, посвященные драйверам, построенным на схеме H-моста. Если вы покупаете готовые шасси, то обязательно предусмотрите возможность размещения на них подходящего драйвера.

Красивый корпус

Как правило, вся конструкция автомобиля строится вокруг его шасси. Если посмотреть примеры готовых проектов, то они часто выглядят как “провода на колесиках” – внешний вид их изобилует пучками соединительных проводов, ведущих от восседающего на троне контроллера Ардуино к драйверам, моторам и датчикам. Между тем, красивый и функциональный корпус не только вызывает правильные эстетические чувства и помогает выделить вашу модель от остальных. Хороший корпус может превратить игрушку в реальное устройство, помогает привить навыки конструирования и промышленного дизайна, что важно для инженеров любого возраста.

Питание робота

Обеспечение правильной схемы питания – это то, что очень часто оказывается на последнем месте в списке приоритетов начинающих ардуинщиков. Между тем, именно ошибки в схеме электропитания становятся основными причинами проблем, возникающих в процессе работы умных устройств на Ардуино. Создавая ардуино-машинку нужно предусмотреть питание контроллера, двигателей, драйвера и датчиков. У всех них есть свои ограничения и особенности работы, требуется создать оптимальное по весу и сложности решение, позволяющее учесть все эти ограничения.

Питание робота на Ардуино

Создавая по-настоящему автономное устройство робота, нужно побеспокоиться и о времени его работы, и о возможности быстрой подзарядки или смены батареек. Как правило, выбираются решения из следующих вариантов:

  • Обычные батарейки AA. Тут нужно понимать, что платы Arduino Uno, Nano и большинство двигателей, используемых в Ардуино-робототехнике, требуют напряжения в диапазоне 6-9 вольт. Поэтому придется собрать вместе последовательно не менее 4 батареек на 1,5 В, причем сами батарейки должны быть хорошего качества и обеспечивать работу с достаточно большим током. Например, большинство солевых батареек этим критериям не удовлетворяют. Батарейки AAA при создании ардуино-машинок практически не используются из-за своей пониженной емкости (хотя могут использоваться в миниатюрных моделях, где размер имеет первостепенное значение).
  • Аккумулятор AA. Здесь возникает еще большее ограничение по напряжению и току. Большинство аккумуляторов выдают напряжение 1,2 вольт, поэтому их требуется больше для “собирания” нужных нам 6-9 вольт. Несомненным плюсом является возможность перезарядки.
  • Литиевые аккумуляторы 18650. Это уже “серьезная артиллерия”, позволяющая получить большое время автономной работы, возможность подзарядки и приемлемые характеристики по току и напряжению. Рабочее напряжение для таких элементов питания – 3,7 В, что позволяет собирать готовую схему питания всего из двух элементов.
  • Другие источники питания. Сюда можно включить как более мощные и габаритные никель-металлгидридные, кадмиевые аккумуляторы, так и многочисленные литий-ионные “плоские” варианты, используемые в дронах, смартфонах или другой портативной цифровой технике.
Читать еще:  Мандарин комнатный мандариновое дерево инструкция по уходу

Каким бы ни был источник питания, нужно обеспечить его надежное крепление, удобное расположение, защиту от воздействия недружелюбной окружающей среды. Если вы подключаете к одному источнику и контролер, и двигатели, и датчики, то нужно позаботиться о правильной схеме, включающей, например, надежную связь “по земле” всех устройств.

Где купить платформу и запчасти

Все, о чем говорится в этой статье, можно без проблем купить на всем известном сайте. К сожалению, подавляющее большинство предложений основываются на стандартной платформе 4WD автомобиля с двумя несущими планками, не очень надежными двигателями и колесами, любящими ездить в “развалочку”. Но эти варианты относительно не дороги и вполне подойдут для начала работы.

DIY: Несложный робот пылесос под Arduino своими руками. Пошаговая инструкция по изготовлению

Популярность автоматизированных домашних уборщиков с каждым днем возрастает. Не исключение, роботы-пылесосы для сухой уборки, способные поддерживать чистоту пола без вашего вмешательства. Принцип работы этих устройств очень прост и схож на прицип работы ручного пылесоса, главным отличием является наличие микроконтроллера, набора датчиков для самостоятельной работы, подзарядки и ориентировании в пространстве. Об этом мы ранее описывали в целой статье, специально посвященной роботизированным уборщикам полов.

Если вы хотите узнать, как он устроен и построить его собственными руками, представляем вашему вниманию инструкцию по сборке простейшего робота-пылесоса из подручных средств.

Материалы и компоненты:

Для создания робота-уборщика необходимы:

  • плата Arduino;
  • плата контроля электромоторов Arduino motor shield;
  • два двигателя с коробкой передач (3 вольта, приблизительно 100 оборотов в минуту);
  • два колеса или две алюминиевые банки;
  • турбина-кулер компьютерного охлаждения (5 В или 12 Вольт);
  • аккумулятор для питания 5 вольт;
  • пластина для сбора радиоэлементов и провода;
  • большой круглый пластиковый контейнер — для корпуса;
  • небольшой пластиковый контейнер — для мусоросборника;
  • картон;
  • термоклей;
  • магниты.

Шаг 1: Программный код и скетч:

Для правильной и точной работы в роботе-пылесосе существует «сердце» в виде микроконтроллера Arduino, программируемого с помощью домашнего ПК и необходимого программного обеспечения.

Скетч для работы робота-пылесоса загружается на плату с помощью программы Arduino IDE. Ниже программный код.

/*
Program for controlling a robot with two motors.
The robot turns when motors changes their speed and direction.
Front bumpers on left and right sides detect obstacles.
Ultrasonic sonars can be connected to analog inputs (tested on LV-MaxSonar-EZ1):
— put pins in array sonarPins in following order: left, right, front, others..
Examples:
1. only left and right sonars connected to pins 2 and 3: sonarPins[] = <2,3>
2. left, right and front sonars connected to pins 2, 3 and 5: sonarPins[] = <2,3,5>
3. only front sonar connected to pin 5: sonarPins[] = <-1,-1,5>
4. only left sonar connected to pin 2: sonarPins[] = <2>
5. only right sonar connected to pins 3: sonarPins[] = <-1,3>
6. 5 sonars connected to pins 1,2,3,4,5: sonarPins[] = <1,2,3,4,5>
Motor shield is used to run motors.
*/
const int Baud = 9600; //UART port speed

//Sonar properties
int sonarPins[] = <1, 2>;//Analog Pin Nums to sonar sensor Pin AN
const long MinLeftDistance = 20; //Minimum allowed left distance
const long MinRightDistance = 20; //Minimum allowed right distance
const long MinFrontDistance = 15; //Minimum allowed front distance
const int SamplesAmount = 15;//more samples — smoother measurement and bigger lag
const int SonarDisplayFrequency = 10; //display only one of these lines — not all
int sonarDisplayFrequencyCount = 0;
const long Factor = 2.54 / 2;
long samples[sizeof(sonarPins)][SamplesAmount];
int sampleIndex[sizeof(sonarPins)];

//right side
const int pinRightMotorDirection = 4; //this can be marked on motor shield as «DIR A»
const int pinRightMotorSpeed = 3; //this can be marked on motor shield as «PWM A»
const int pinRightBumper = 2; //where the right bumper is connected

//left side
const int pinLeftMotorDirection = 7; //this can be marked on motor shield as «DIR B»
const int pinLeftMotorSpeed = 6; //this can be marked on motor shield as «PWM B»
const int pinLeftBumper = 8; //where the right bumper is connected

//uncomment next 2 lines if Motor Shield has breaks
//const int pinRightMotorBreak = PUT_BREAK_PIN_HERE; //this can be marked on motor shield as «BREAKE A»
//const int pinLeftMotorBreak = PUT_BREAK_PIN_HERE; //this can be marked on motor shield as «BREAKE B»

//fields
const int turnRightTimeout = 100;
const int turnLeftTimeout = 150;
//set in counter how long a motor is running back: N/10 (in milliseconds)
int countDownWhileMovingToRight;
int countDownWhileMovingToLeft;

//Initialization
void setup() <
Serial.begin(Baud);
initPins();

//uncomment next 4 lines if Motor Shield has breaks
// pinMode(pinLeftMotorBreak, OUTPUT);
// pinMode(pinRightMotorBreak, OUTPUT);
// digitalWrite(pinLeftMotorBreak, LOW); //turn off breaks
// digitalWrite(pinRightMotorBreak, LOW); //turn off breaks

runRightMotorForward();
runLeftMotorForward();
startMotors();
>

//Main loop
void loop() <

delay(10);//repeat every 10 milliseconds
>

//—————————————————
void initPins() <
pinMode(pinRightMotorDirection, OUTPUT);
pinMode(pinRightMotorSpeed, OUTPUT);
pinMode(pinRightBumper, INPUT);
pinMode(pinLeftMotorDirection, OUTPUT);
pinMode(pinLeftMotorSpeed, OUTPUT);
pinMode(pinLeftBumper, INPUT);
for(int i = 0; i MinRightDistance //checks if the minimum allowed right distance is not reached
&& measureDistance(2, ‘F’) > MinFrontDistance)//checks if the minimum allowed front distance is not reached
return;
if(checkCounterIsNotSet(countDownWhileMovingToRight))//if the counter is not yet counting down
runRightMotorBackward();//run the right motor backward
countDownWhileMovingToRight = turnRightTimeout;//set the counter to maximum value to start it counting down
>

void verifyAndSetLeftSide() <
if(checkBumperIsNotPressed(pinLeftBumper) //checks if left bumper has NOT been pressed
&& measureDistance(0, ‘L’) > MinLeftDistance //checks if the minimum allowed left distance is not reached
&& measureDistance(2, ‘F’) > MinFrontDistance)//checks if the minimum allowed front distance is not reached
return;
if(checkCounterIsNotSet(countDownWhileMovingToLeft))//if the counter is not yet counting down
runLeftMotorBackward();//run the right motor backward
countDownWhileMovingToLeft = turnLeftTimeout;//set the counter to maximum value to start it counting down
>

Читать еще:  Отмостка своими руками пошаговая инструкция

bool checkCounterIsNotSet(int counter) <
return counter = sizeof(sonarPins) — 1 || sonarPins[pinIndex] = SamplesAmount)
sampleIndex[pinIndex] = 0;
samples[pinIndex][sampleIndex[pinIndex]] = value;
return true;
>

long calculateAvarageDistance(int pinIndex) <
long average = 0;
for(int i = 0; i

Шаг 2: Монтирование деталей:

Для крепления сервоприводов с колесами, кулера, плат управления, аккумулятора и другого используется картонная основа. Турбина и пластиковый контейнер (мусоросборник), с проделанным предварительно отверстием, прочно склеивается между собой и крепится на картон. Контейнер имеет отверстие для выдуваемого воздуха, на которое наклеена специальная синтетическая ткань, служащая фильтром.

Последовательно склеиваем кулер с сервоприводами, затем на сервоприводы клеим картонную площадку, на которой располагаются платы Arduino и батарея питания. Чтобы сделать колеса, необходимо отрезать нижнюю и верхнюю часть алюминиевых банок, склеить их между собой, а затем прочно закрепить на валу сервопривода.

В передней части монтируются металлические пластины (функция подвижного бампера), при замыкании которых сигнал поступает в плату управления электродвигателями Arduino motor shield, после чего сервоприводы начинают вращаться в другую сторону, изменяя направление движения робота.


Шаг 3: Установка корпуса:

При установке аккумуляторной батареи и подключении всех элементов конструкции с помощью проводов, необходимо обеспечить устройство прочным корпусом. Как раз таки для этого используется большой круглый контейнер. Для действия контактов, предотвращающих столкновение и застревание, делаем в контейнере специальные надрезы. Чтобы корпус был легкосъемным и прочно держался на механической части, используем восемь магнитов (при желании можно больше), по четыре приклеенных на самом контейнере и на внутренней части пылесоса соответственно.

Прекрасный прототип робота-пылесоса, сделанного своими руками. Не беря во внимание отсутствие дополнительных датчиков навигации и базы автоматической подзарядки, данный аппарат за пол часа работы вполне самостоятельно может собрать мусор, пыль и грязь на вашей кухне или в небольшой комнате. Его конструкция не представляет большой сложности, а стоимость и доступность деталей не вызывает сомнения. Все дело в творческом подходе. Вы можете менять элементы конструкции по вашему усмотрению, добавлять или убирать лишние элементы, модернизируя свой аппарат. Желаем приятно провести время, создавая свой робот для сухой уборки полов у вас дома.

Как сделать робот-пылесос своими руками на Ардуино

Робот-пылесос своими руками Ардуино изготавливается из подручных материалов. Оборудование способно перемещаться по комнате, изменять направление движения после контакта с посторонними предметами и удалять пыль с поверхности пола.

Требуемые компоненты

Для сборки пылесоса на Ардуино потребуются компоненты:

  • блок управления;
  • отдельный контроллер для управления работой электродвигателей (обозначается на схемах как H-Bridge);
  • электрические двигатели постоянного тока с редукторами для привода боковых колес;
  • комплект колес;
  • источник питания (аккумуляторы или батарейки, суммарное напряжение 5 В);
  • турбина (используется узел, предназначенный для охлаждения процессоров или чипов видеокарт);
  • адаптер питания (при использовании компонентов, рассчитанных на напряжение 12 В);
  • комплект магнитов;
  • коммутационный шнур USB;
  • комплект кабелей для подключения блока Ардуино к цепям оборудования;
  • листовой плотный картон;
  • термический клей в тубе;
  • пистолет для нанесения клея;
  • резервуар для сбора пыли (готовый пластиковый или металлический контейнер);
  • пластиковые хомуты;
  • металлическая банка от напитков (для изготовления крепежных элементов).

Процесс сборки

Пошаговый процесс сборки робота-пылесоса Ардуино:

  1. Разложить компоненты конструкции будущего изделия на ровной поверхности для определения взаимного расположения и габаритов корпуса.
  2. Вырезать из картона круглое основание.
  3. Выполнить на детали прорези для боковых колес, которые располагаются по поперечной оси симметрии.
  4. Закрепить электрические приводы колес пластиковыми хомутами к корпусу.
  5. Прорезать канал для забора воздуха и зафиксировать клеем турбину над полученным окном. Узел крепится на противоположной от двигателей ходовой части стороне поддона.
  6. Разметить зону установки контейнера для пыли, который размещается над окном с роторным рабочим колесом.
  7. Установить и закрепить термическим клеем на внутренней части магниты (по предварительно размеченному контуру резервуара для пыли). Ответные магнитные элементы размещаются через лист бумаги на противоположной стороне поддона. Емкость для пыли приклеивается к магнитам, которые плотно прижимаются к боковой поверхности резервуара. Лист бумаги удаляется, коробка удерживается на запланированной монтажной точке взаимным притяжением магнитов.
  8. Закрепить на верхней плоскости поддона аккумуляторную батарею и контроллер Ардуино. Допускается установка элементов в направляющие узлы, изготовленные из древесины или пластика. Пользователи используют стандартные блоки управления Ардуино, часть владельцев самостоятельно корректирует прошивку микропроцессора путем подключения изделия к компьютеру.
  9. Разместить блок H-Bridge поверх контроллера и соединить электронику пылесоса с аккумулятором. Для соединения кабелей применяется пайка и установка коммутационных штекеров.
  10. Подключить электрические двигатели к выводам блоков управления.
  11. Вырезать картонные заготовки для фронтального бампера. Детали монтируются на передней части корпуса, точка соединения допускает перемещение бампера после столкновения робота с препятствием.
  12. Припаять отрезки кабеля к прямоугольным жестяным пластинам (требуется изготовить 2 элемента). Металлические пластинки устанавливаются на расстоянии от внутренней стороны импровизированных бамперов. На внутренней поверхности бампера наклеивается фольга, на которую подается положительное напряжение от батареи. При столкновении пластинка соединяется с фольгой и работает как датчик препятствия. В сигнальной цепи от пластины устанавливается дополнительное сопротивление, снижающее риск ложных срабатываний.

Для очистки воздуха от пыли применяется фрагмент от кухонной салфетки, изготовленной из волокнистого синтетического материала. Элемент устанавливается под основанием контейнера пылесборника и удерживается магнитами. В самом контейнере прорезается прямоугольный канал, через который затягивается воздух с пылью. Для регулировки зазора между резервуаром и напольным покрытием применяется сменное дистанционное кольцо из картона или пробки.

Читать еще:  Сделать робота из железа руками

Робот-пылесос на ардуино


Итак начнем пожалуй с конструкции и принципа работы пылесоса.

Из схемы видно, что пылесос оборудован 6 инфракрасными датчиками. Они срабатывают при приближении пылесоса к препятствию, давая комманду остановиться и развернуться не врезаясь в него. Если же ни один из 6 датчиков не сработал и робот пылесос сталкивается с препятствием, то тогда срабатывает один из 2 выключателей, которые соединяют бампер (в котором находятся ИК датчики) и корпус робота.
Внимательные читатели заметили, что на схеме не показано питание робота. Тут решение вполне стандартное, использованы 4 аккумулятора формата 18650, подключенных последовательно две пары, через контроллер заряда-разряда АКБ. Далее с контроллера через выключатель подсоединены повышающий и понижающий DC-DC преобразователи. + 12 вольт питает моторы колес и моторы передних щеток. +5 вольт питает всю остальную электронику. Турбина питается от 7 — 8 вольт, так что для нее преобразователь не нужен. Выглядит это так:

В итоге список основных компонентов выглядит так:
ардуино про мини
L298N Motor Driver Module
колеса
повышающий конвертер
понижающий конвертер
ИК датчик 6 шт.
контроллер заряда-разряда
крыльчатка для турбины (около 200 руб)
ПВХ для изготовления корпуса
АКБ 18650 4 шт.
2 моторчика для щеток (модель не сильно важна)
1 моторчик для турбины
2 выключателя столкновения.
Один из вариантов скетча для хаотичной уборки

#define ir_1 A0 //пин 1 ИК-датчика
#define ir_2 A1 //пин 2 ИК-датчика
#define ir_3 A2 //пин 3 ИК-датчика
#define ir_4 A3 //пин 4 ИК-датчика
#define ir_5 A4 //пин 5 ИК-датчика
#define ir_6 A5 //пин 6 ИК-датчика

#define lev_vik 11 //пин левого выключателя
#define pra_vik 12 //пин правого выключателя

//для выравнивания скорости колес
byte max_skor_lev = 254;
byte max_skor_prav = 244;
//———————————

byte min_skor = 0;

randomSeed(analogRead(A7));
// пины энкодеров на вход
pinMode(3, INPUT); // пин левого энкодера на вход
pinMode(2, INPUT); // пин правого энкодера на вход
//————————-
// пины для левого и правого моторов на выход
pinMode(mot_ena, OUTPUT);
pinMode(mot_in1, OUTPUT);
pinMode(mot_in2, OUTPUT);
pinMode(mot_in3, OUTPUT);
pinMode(mot_in4, OUTPUT);
pinMode(mot_enb, OUTPUT);
//——————————————-
// пины ИК-датчиков на вход
pinMode(ir_1, INPUT);
pinMode(ir_2, INPUT);
pinMode(ir_3, INPUT);
pinMode(ir_4, INPUT);
pinMode(ir_5, INPUT);
pinMode(ir_6, INPUT);
//————————-
// пины левого и правого выключателей на вход
pinMode(lev_vik, INPUT);
pinMode(pra_vik, INPUT);
//—————————
delay(3000);

// если срабатывает левый выключатель на бампере
if (digitalRead(lev_vik) == LOW)
<
ROB_STOP();
delay(200);
ROB_NAZAD();
delay(150);
ROB_STOP();
delay(200);
ROB_PRAV();
delay(random(400, 1500));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает правый выключатель на бампере
if (digitalRead(pra_vik) == LOW)
<
ROB_STOP();
delay(200);
ROB_NAZAD();
delay(150);
ROB_STOP();
delay(200);
ROB_LEV();
delay(random(400, 1500));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 2 ИК-датчик
if (digitalRead(ir_2) == LOW)
<
ROB_STOP();
delay(200);
ROB_PRAV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 3 ИК-датчик
if (digitalRead(ir_3) == LOW)
<
ROB_STOP();
delay(200);
ROB_PRAV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 4 ИК-датчик
if (digitalRead(ir_4) == LOW)
<
ROB_STOP();
delay(200);
ROB_LEV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 5 ИК-датчик
if (digitalRead(ir_5) == LOW)
<
ROB_STOP();
delay(200);
ROB_LEV();
delay(random(200, 1100));
ROB_STOP();
delay(200);
ROB_VPERED();
>
//————————————————
// если срабатывает 1 ИК-датчик
if (digitalRead(ir_1) == LOW)
<
ROB_PRAV();
delay(10);
ROB_VPERED();
>
//————————————————
// если срабатывает 6 ИК-датчик
if (digitalRead(ir_6) == LOW)
<
ROB_LEV();
delay(10);
ROB_VPERED();
>
//————————————————

// поворот направо на месте
void ROB_PRAV()
<
// левый мотор вперед
digitalWrite(mot_in1, LOW);
digitalWrite(mot_in2, HIGH);
analogWrite(mot_ena, max_skor_lev);
// правый мотор назад
digitalWrite(mot_in3, LOW);
digitalWrite(mot_in4, HIGH);
analogWrite(mot_enb, max_skor_prav);
>
//——————
// поворот налево на месте
void ROB_LEV()
<
// правый мотор вперед
digitalWrite(mot_in3, HIGH);
digitalWrite(mot_in4, LOW);
analogWrite(mot_enb, max_skor_prav);
// левый мотор назад
digitalWrite(mot_in1, HIGH);
digitalWrite(mot_in2, LOW);
analogWrite(mot_ena, max_skor_lev);
>
//———————
// езда вперед
void ROB_VPERED()
<
// левый мотор вперед
digitalWrite(mot_in1, LOW);
digitalWrite(mot_in2, HIGH);
analogWrite(mot_ena, max_skor_lev);
// правый мотор вперед
digitalWrite(mot_in3, HIGH);
digitalWrite(mot_in4, LOW);
analogWrite(mot_enb, max_skor_prav);
>
//————————————-
// езда назад
void ROB_NAZAD()
<
// левый мотор назад
digitalWrite(mot_in1, HIGH);
digitalWrite(mot_in2, LOW);
analogWrite(mot_ena, max_skor_lev);
// правый мотор назад
digitalWrite(mot_in3, LOW);
digitalWrite(mot_in4, HIGH);
analogWrite(mot_enb, max_skor_prav);
>
//————————————
// стоп
void ROB_STOP()
<
// левый мотор стоп
digitalWrite(mot_in1, LOW);
digitalWrite(mot_in2, LOW);
analogWrite(mot_ena, min_skor);
// правый мотор стоп
digitalWrite(mot_in3, LOW);
digitalWrite(mot_in4, LOW);
analogWrite(mot_enb, min_skor);
>
//———————————

Ну и небольшое интервью с автором этого проекта. Автора зовут Дмитрий Иванов, живет в г.Сочи.
-Дмитрий, как пришла идея сделать робот-пылесос?
«Увидел на ютубе видео, где робот-пылесос делал уборку, захотел себе купить такой, но когда посмотрел цену, то подумал и решил делать сам. Сначала сделал первую версию робота, у него были слабые моторы на колесах, несъемный контейнер для мусора и пыли, мало датчиков препятствия и я сделал вторую версию, лишенную этих недостатков.»
-Сколько в итоге денег и времени ушло на его изготовление?
«Примерно 5000 тыс. руб. плюс два месяца работы»
-Что было самым сложным в процессе постройки?
«Самое сложное сделать корпус и турбину, подогнать все детали»
-Есть планы продолжать совершенствование робота?
«В планах покрасить корпус, сделать несколько режимов уборки, подключить блютус модуль и написать программу для телефона на андроиде (управление режимами, ручное управление, отображение заряда АКБ). Ну и сделать под пылесосом синюю подсветку для красоты»
На этом оптимистичном моменте думаю закончим рассказ про эту версию робота-пылесоса, хотя осталось много неосвещенных интересных моментов на эту тему. И поэтому завершаем вопросом:

Ссылка на основную публикацию
Adblock
detector