0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Устойчивость откосов сыпучего грунта

Устойчивость откоса обеспечена если

Устойчивость откоса в идеально сыпучих грунтах

Устойчивость откоса в идеально сыпучих грунтах — Лекция, раздел Механика, Механика грунтов Откосом Называют Искусственно Созданную Поверхность, Ограничи.

Откосом называют искусственно созданную поверхность, ограничивающую природный грунтовый массив, выемку или насыпь (дорожное полотно, дамбы, земляные плотины, котлованы, траншеи, канавы и т.д.).

Склоном называют откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

Выбор оптимальной крутизны откосов при проектировании насыпей и выемок позволяет, с одной стороны, избежать аварии, а с другой – снизить объемы земляных работ, тем самым удешевить строительство.

Основными причинами потери устойчивости откосов и склонов являются:

— устройство недопустимого крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

— увеличение внешней нагрузки (складирование материалов на откос или вблизи его бровки, возведение сооружений);

— изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

— неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет повышения влажности и других причин;

— проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и т.п.).

Обычно все эти факторы проявляются во взаимодействии., важнейшую роль играет тщательный анализ инженерно-геологической обстановки объекта.

В проектной практике используют большое количество различных методов оценки устойчивости откосов и склонов, изложенных в работах ученых: К.Тертаги, Г. Крея, Д. Тейлора, Р. Р. Чугаева, Н.Н. Маслова, М.Н. Гольдштейна, А.Л. Можевитинова и ряда других. При этом обычно анализируются два типа задач:

1) оценка устойчивости откоса или склона заданной крутизны;

2) определение оптимальной крутизны откоса или склона при заданном нормативном коэффициенте устойчивости. Коэффициент устойчивости определяют по выражению (7.1):

k st = tg φ / tg φ’ = с / с’ , (7.1)

где φ , с — расчетные значения характеристик сопротивления сдвигу грунта, принятые в проекте по данным геотехнических испытаний;

φ’ , с’ — то же, соответствующие предельному состоянию откоса или склона.

Устойчивость откоса или склона считается обеспеченной (см. лекцию № 6),

Рисунок 23 – Схемы к расчету устойчивости откосов:

а) идеально сыпучего грунта;

б) то же, при действии фильтрационных сил;

в) идеально связного грунта.

если соблюдается условие (6.11):

где k н st — нормативный коэффициент устойчивости, определяемый по по формуле (6.10) или задаваемый в проекте. Его значение находится в пределах 1,1…1,3.

Если φ не равно 0, а с=0, грунты идеально сыпучие. Рассмотрим равновесие частицы грунта, свободно лежащей на поверхности откоса (Рисунок 23, а).

Поскольку грунт обладает только внутренним трением, устойчивость частицы обеспечена, если сдвигающая сила Т будет равна или меньше удерживающей силы трения Т ‘ . При весе частицы Р и коэффициенте внутреннего трения грунта f = tg φ, это условие примет вид (7.2):

Т = sin α ; Т ‘ = Р cos α tg φ; Т ≤ Т ‘ , (7.2)

Откуда: tg α ≤ tg φ или α ≤ φ , (7.3)

Таким образом, если угол заложения откоса равен или меньше угла внутреннего трения грунта, устойчивость откоса обеспечена.

Необходимо оценить запас устойчивости откоса при этих условиях. В предельном состоянии условие (7.3) примет вид (7.4):

то есть, предельное значение угла заложения откоса в сыпучих грунтах равно углу внутреннего трения грунта. Такое значение α часто называют углом естественного откоса. Тогда, учитывая формулу (7.1), выражение (7.4) можно записать в виде (7.5):

tg φ’ = tg φ / k st; α = arctg (tg φ / k st) , (7.5)

k st = tg φ / tg α , (7.6)

При k st ≥ k н st откос обладает необходимым запасом устойчивости.

При проектировании часто требуется определять угол заложения откоса, гарантирующий его устойчивость в соответствии с заданным нормативным коэффициентом устойчивости. В этом случае во второе уравнение формул (7.5) вместо k st нужно подставить k н st :

α = arctg (tg φ / k н st) , (7.7)

Эта тема принадлежит разделу:

Механика грунтов

Кафедра автомобильных дорог.. м е х а н и к а г р у н т о в.. курс лекций..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Устойчивость откоса в идеально сыпучих грунтах

Устойчивость откосов

Автор работы: Пользователь скрыл имя, 24 Июня 2012 в 14:20, реферат

Краткое описание

В настоящее время задачи оценки и прогноза устойчивости откосов и склонов приобретают все большее значение. Основными причинами этого являются постоянно расширяющиеся освоение оползневых территорий под строительство, вызванное дефицитом свободных земельных площадей, а также активизация имеющихся и появление новых оползней, обусловленных вмешательством человека в геологическую среду.

Содержание

Введение………………………………………………………………………………………..3
1.Основные виды нарушения устойчивости откосов……………………………………….4
2.Методы расчета устойчивости откосов…………………………………………………….
2.1.Устойчивость откоса идеально сыпучего грунта………………………………………..
2.2.Метод круглоцилиндрических поверхностей скольжения…………………………….
2.3.Устойчивость откоса идеально связного массива грунта……………………………….
3.Мероприятия по повышению устойчивости откосов и склонов………………………….
Список используемой литературы……………………………………………………………

Вложенные файлы: 1 файл

РЕФЕРАТ устойчивость откосов1.doc

1.Основные виды нарушения устойчивости откосов……………………………………….4

2.Методы расчета устойчивости откосов…………………………………………………….

2.1.Устойчивость откоса идеально сыпучего грунта………………………………………..

2.2.Метод круглоцилиндрических поверхностей скольжения…………………………….

2.3.Устойчивость откоса идеально связного массива грунта……………………………….

3.Мероприятия по повышению устойчивости откосов и склонов………………………….

Список используемой литературы…………………………………………………… ………

В настоящее время задачи оценки и прогноза устойчивости откосов и склонов приобретают все большее значение. Основными причинами этого являются постоянно расширяющиеся освоение оползневых территорий под строительство, вызванное дефицитом свободных земельных площадей, а также активизация имеющихся и появление новых оползней, обусловленных вмешательством человека в геологическую среду.

При разработке грунта, устройстве насыпей (дамбы, земляные плотины, дорожное полотно и т.д.) и выемок (котлованы, траншеи, каналы и т.п.) и в ряде других случаев возникает необходимость в устройстве откосов.
Откосом называется искусственно созданная поверхность, ограничивающая природный грунтовый массив, выемку или насыпь.

Склоном называется откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

Заложение откоса — это горизонтальная его проекция. Бровка откоса — линия, которая находится там, где начинается горизонтальная часть — его гребень. Бермы — горизонтальные площадки, которые устраиваются для общего уположения откоса, а также по технологическим обстоятельствам (рис.1).

1 — подножье; 2 — поверхность; 3 — бровка; 4 — берма; 5 — гребень

Предельно устойчивым называется откос, под которым в каждой точке грунт находится в предельно напряженном состоянии. Теоретически предельно устойчивый откос из сыпучего грунта — песка имеет прямолинейный контур с углом наклона к горизонту, равным углу внутреннего трения. Предельно устойчивый откос из связного глинистого грунта криволинейный (см.рис.2), книзу он постепенно уполаживается и стремится к наклону, приближающемуся к углу внутреннего трения. Наиболее рациональное очертание откоса — близкое к предельно устойчивому.

Читать еще:  Толщина нанесения грунтовки по металлу

При неблагоприятном сочетании разнообразных факторов массив грунтов, ограниченный откосом или склоном, может перейти в неравновесное состояние и потерять устойчивость.

  1. Основные виды нарушения устойчивости откосов

Откосы нередко подвержены деформированию в виде обрушений (рис. 2), оползней (рис.2,б,в,г), осыпаний и оплываний (рис.2,д).

Обрушения имеют место при потере массивом грунта опоры у подножия откоса.

Оползни и оползания характеризуются перемещением некоторого объема грунта.

Осыпание происходит при превышении силами сдвига сопротивления несвязного грунта на незакрепленной поверхности.

Оплыванием (сплывом) называется постепенная деформация нижней части обводненного откоса или склона без образования четких поверхностей скольжения.

Основными причинами потери устойчивости откосов являются:
•устройство недопустимо крутого откоса;
•устранение естественной опоры массива грунта из-за разработки траншей, котлованов, подмыва откосов и т.д.;
•увеличение внешней нагрузки на откос, например, возведение сооружений или складирование материалов на откосе или вблизи него;
• снижение сцепления и трения грунта при его увлажнении, что возможно при повышении уровня подземных вод;
• неправильное назначение расчетных характеристик прочности грунта;
• влияние взвешивающего действия воды на грунты в основании;

•динамические воздействия (движение транспорта, забивка свай и т.п.), проявление гродинамического давления и сейсмических сил.
Нарушение устойчивости откосов часто является результатом нескольких причин, поэтому при изысканиях и проектировании необходимо оценивать вероятные изменения условий существования грунтов в откосах в течение всего периода их эксплуатции.

Рис. 2. Характерные виды деформаций откосов:
а — обрушение; б сползание; в — оползень; г — оползень с выпором; д — оплывание; 1—плоскость обрушения; 2 — плоскость скольжения; 3 — трещина растяжения; 4— выпор грунта; 5 — слабый прослоек; 6, 7— установившийся и первоначальный уровни воды; 8 — поверхность оплывания; 9—кривые депрессии

Различают три основных типа разрушения откоса (рис. 3):
• разрушение передней части откоса (рис3,а). Для крутых склонов (> 60°) характерно сползание с разрушением передней части откоса. Такое разрушение чаще всего возникает в вязких грунтах, обладающих адгезионной способностью и углом внутреннего трения;
•разрушение нижней части откоса (рис. 3,б). На сравнительно пологих откосах разрушение происходит таким образом, что поверхность скольжения соприкасается с глубоко расположенным твердым слоем. Такой тип разрушения чаще всего возникает в слабых глинистых грутах, когда твердый слой расположен глубоко;

Рис. 3. Типы разрушения откосов:
а — разрушение передней части откоса; б — разрушение нижней части откоса; в — разрушение внутреннего участка откоса

•разрушение внутреннего участка откоса (рис. 3,в). Разрушение происходит таким образом, что край поверхности скольжения проходит выше передней части откоса. Такое разрушение также возникает в глинистых грунтах, когда твердый слой находится сравнительно неглубоко. Таким образом, основными причинами нарушения устойчивости земляных масс являются эрозионные процессы и нарушение равновесия. Эрозионные процессы в механике грунтов не рассматриваются, так как они более подробно рассмотрены в инженерной геологии.

  1. Методы расчета устойчивости откосов

Основными элементами открытой разработки карьера, котлована или траншей без крепления откосов является высота Н и ширина l уступа, его форма, крутизна и угол естественного откоса α (рис. 4). Обрушение уступа происходит чаще всего по линии ВС, расположенной под углом θ к горизонту. Объем ABC называется призмой обрушения. Призма обрушения удерживается в равновесии силами трения, приложенными в плоскости сдвига.

Нарушение устойчивости земляных масс часто сопровождается значительными разрушениями мостов, дорог, каналов, зданий и сооружений, расположенных на оползающих массивах. В результате нарушения прочности (устойчивости природного склона или искусственного откоса) формируются характерные элементы оползня (рис. 5).

Устойчивость откосов анализируется с помощью теории предельного равновесия или путем рассмотрения призмы обрушения или сползания по потенциальной поверхности скольжения как твердого тела.

Рис.4 Схема откоса грунта: 1 — откос; 2 — линия скольжения; 3 — линия, соответствующая углу внутреннего трения; 4 — возможное очертание откоса при обрушении; 5 — призма обрушения массива грунта

Рис. 5 Элементы оползня
1 — поверхность скольжения; 2 — тело оползня; 3 — стенка срыва; 4 — положение склона до оползневого смещения; 5 — коренные породы склона

Устойчивость откоса в основном зависит от его высоты и вида грунта.

Для установления некоторых понятий рассмотрим две элементарные задачи:

  1. устойчивость откоса идеально сыпучего грунта;
  2. устойчивость откоса идеально связного массива грунта.

2.1 Устойчивость откоса идеально сыпучего грунта

Рассмотрим в первом случае устойчивость частиц идеально сыпучего грунта, слагающего откос. Для этого составим уравнение равновесия твердой частицы М, которая лежит на поверхности откоса (рис. 6,а). Разложим вес этой частицы F на две составляющие: нормальную N к поверхности откоса АВ и касательную Т к ней. При этом сила Т стремится сдвинуть частицу М к подножию откоса, но ей будет препятствовать противодействующая сила Т’, которая пропорциональна нормальному давлению.

Рис. 6. Схема сил, действующих на частицу откоса: а — сыпучий грунт; б — связный грунт

где ƒ — коэффициент трения частицы грунта по грунту, равный тангенсу угла внутреннего грения.

Составим уравнение проекции всех сил на наклонную грань откоса в условиях предельного равновесия:

Отсюда получим, что в этих условиях tgα = tgφ, окончательно α = φ.

Таким образом, предельный угол откоса сыпучего грунта равен углу внутреннего трения. Этот угол носит название угол естественного откоса.

2.2 Устойчивость откоса идеально связного массива грунта

Рассмотрим устойчивость откоса АД высотой Нk для связного грунта (рис. 6,б). Нарушение равновесия при некоторой предельной высоте произойдет по плоской поверхности скольжения ВД, наклоненной под углом θ к горизонту, так как наименьшей площадью такой поверхности между точками В и Д будет обладать плоскость ВД. По всей этой плоскости будут действовать силы удельного сцепления С.

Составим уравнение равновесия всех сил, действующих на оползневую призму АВД. Принимая во внимание, что, согласно рис. 6,б, сторона призмы обрушения АВ = Hkctg θ, получим

где γ— удельный вес грунта.

Силами, сопротивляющимися скольжению, будут лишь силы удельного сцепления, которые распределяются по плоскости скольжения

В верхней точке В призмы АВД давление будет равно нулю, а в нижней точке Д максимальное, тогда по середине — половине удельного сцепления.

Составим уравнение проекции всех сил на плоскость скольжения и приравняем ее к нулю:

Читать еще:  Цинотан грунтовка или эмаль

Полагая sin 2θ = 1 при θ = 45°, получим

Из выражения (7) видно, что при высоте котлована (откоса) Нк > 2с/γ произойдет обрушение массива грунта по некоторой плоскости скольжения под углом в к горизонту (см. рис. 6,6).

2.3 Метод круглоцилиндрических поверхностей скольжения

Реальные грунты, как правило, обладают не только сцеплением, но и трением. В связи с этим проблема устойчивости откосов становится значительно сложнее, чем в рассмотренных случаях. Поэтому на практике для решения задач в строгой постановке, большое распространение получил метод круглоцилиндрических поверхностей скольжения.

Теория предельного равновесия грунтов, развитая В.В. Соколовским, позволяет решать задачи двух типов:

  1. задан угол наклона плоского откоса, определяется интенсивность
    внешней нагрузки на верхней горизонтальной поверхности грунта, офаниченного откосом массива;
  2. задана интенсивность нагрузки на верхней горизонтальной поверхности грунта, офаниченного откосом массива, определяется форма равноустойчивого откоса, находящегося в предельном напряженном состоянии.

Задача первого типа, при однородных грунтах и плоском откосе (рис. 7) решена В.В. Соколовским в безразмерных величинах q (табл. 1).

Рис.7 Схема к расчету устойчивости плоского откоса по теории предельного равновесия

Вопрос 1 — Устойчивость откоса в идеально сыпучих грунтах

Откосом называют искусственно созданную поверхность, ограничивающую природный грунтовый массив, выемку или насыпь (дорожное полотно, дамбы, земляные плотины, котлованы, траншеи, канавы и т.д.).

Склоном называют откос, образованный природным путем и ограничивающий массив грунта естественного сложения.

Выбор оптимальной крутизны откосов при проектировании насыпей и выемок позволяет, с одной стороны, избежать аварии, а с другой – снизить объемы земляных работ, тем самым удешевить строительство.

Основными причинами потери устойчивости откосов и склонов являются:

— устройство недопустимого крутого откоса или подрезка склона, находящегося в состоянии, близком к предельному;

— увеличение внешней нагрузки (складирование материалов на откос или вблизи его бровки, возведение сооружений);

— изменение внутренних сил (увеличение удельного веса грунта при возрастании его влажности или, напротив, влияние взвешивающего давления воды на грунты);

— неправильное назначение расчетных характеристик прочности грунта или снижение его сопротивления сдвигу за счет повышения влажности и других причин;

— проявление гидродинамического давления, сейсмических сил, различного рода динамических воздействий (движение транспорта, забивка свай и т.п.).

Обычно все эти факторы проявляются во взаимодействии., важнейшую роль играет тщательный анализ инженерно-геологической обстановки объекта.

В проектной практике используют большое количество различных методов оценки устойчивости откосов и склонов, изложенных в работах ученых: К.Тертаги, Г. Крея, Д. Тейлора, Р. Р. Чугаева, Н.Н. Маслова, М.Н. Гольдштейна, А.Л. Можевитинова и ряда других. При этом обычно анализируются два типа задач:

1) оценка устойчивости откоса или склона заданной крутизны;

2) определение оптимальной крутизны откоса или склона при заданном нормативном коэффициенте устойчивости. Коэффициент устойчивости определяют по выражению (7.1):

k st = tg φ / tg φ’ = с / с’ , (7.1)

где φ , с — расчетные значения характеристик сопротивления сдвигу грунта, принятые в проекте по данным геотехнических испытаний;

φ’ , с’ — то же, соответствующие предельному состоянию откоса или склона.

Устойчивость откоса или склона считается обеспеченной (см. лекцию № 6),

Рисунок 23 – Схемы к расчету устойчивости откосов:

а) идеально сыпучего грунта;

б) то же, при действии фильтрационных сил;

в) идеально связного грунта.

если соблюдается условие (6.11):

где k н st — нормативный коэффициент устойчивости, определяемый по по формуле (6.10) или задаваемый в проекте. Его значение находится в пределах 1,1…1,3.

Если φ не равно 0, а с=0, грунты идеально сыпучие. Рассмотрим равновесие частицы грунта, свободно лежащей на поверхности откоса (Рисунок 23, а).

Поскольку грунт обладает только внутренним трением, устойчивость частицы обеспечена, если сдвигающая сила Т будет равна или меньше удерживающей силы трения Т ‘ . При весе частицы Р и коэффициенте внутреннего трения грунта f = tg φ, это условие примет вид (7.2):

Т = sin α ; Т ‘ = Р cos α tg φ; Т ≤ Т ‘ , (7.2)

Откуда: tg α ≤ tg φ или α ≤ φ , (7.3)

Таким образом, если угол заложения откоса равен или меньше угла внутреннего трения грунта, устойчивость откоса обеспечена.

Необходимо оценить запас устойчивости откоса при этих условиях. В предельном состоянии условие (7.3) примет вид (7.4):

то есть, предельное значение угла заложения откоса в сыпучих грунтах равно углу внутреннего трения грунта. Такое значение α часто называют углом естественного откоса. Тогда, учитывая формулу (7.1), выражение (7.4) можно записать в виде (7.5):

tg φ’ = tg φ / k st; α = arctg (tg φ / k st) , (7.5)

k st = tg φ / tg α , (7.6)

При k st ≥ k н st откос обладает необходимым запасом устойчивости.

При проектировании часто требуется определять угол заложения откоса, гарантирующий его устойчивость в соответствии с заданным нормативным коэффициентом устойчивости. В этом случае во второе уравнение формул (7.5) вместо k st нужно подставить k н st :

α = arctg (tg φ / k н st) , (7.7)

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.001 с) .

Расчет устойчивости откоса и склона

Основные положения по расчету устойчивости откосов и склонов

Расчет устойчивости откоса и склона предполагает, во-первых, определение схемы наиболее вероятного разрушения, и, во-вторых, определение расчетного коэффициента устойчивости для этой схемы. Необходимость расчета устойчивости откоса и склона крайне часто возникает в инженерной практике. В данной статье описан современный подход к выполнению этого расчета, и приведены рекомендации для Заказчиков и инженеров.

Коэффициент устойчивости откоса (склона) – это отношение суммы всех сил, удерживающих откос в равновесии, к сумме всех сдвигающих сил, стремящихся вывести его из равновесия.

Коэффициент устойчивости подразделяют на:

– расчетный коэффициент устойчивость, который определяется в ходе геотехнических расчетов;

– нормативный (требуемый, допустимый) коэффициент устойчивость, который установлен нормативными документами.

Расчетный коэффициент устойчивости kst должен быть более или равен нормативному коэффициенту устойчивости [kst], определяемому согласно СП 116.13330.2012.

Из определения коэффициента устойчивости видно, что по результатам расчетов возможны четыре основных варианта:

Варианта №1

Значение коэффициента устойчивости выше единицы (kst>1) – это означает, что анализируемый откос или склон устойчив.

Вариант №2

Значение коэффициента устойчивости приблизительно равно единице (kst≈1) – это означает, что анализируемый откос или склон находится в состоянии предельного равновесия.

Вариант №3

Значение коэффициента устойчивости менее единицы (kst

Читать еще:  Фиксация резьбовых соединений грунтовкой

Вариант №4.

Вариант №4. По расчету склон не устойчив, а по факту – устойчив, или наоборот. Это особый случай, который подробнее рассмотрим ниже.

Порядок работ по оценке устойчивости откосов и склонов

Оценка устойчивости существующего и проектируемого склона должна включать:

  • сбор и анализ исходных данных;
  • выбор расчетных створов;
  • составление расчетной схемы;
  • выбор подходящего расчетного метода;
  • выполнение расчета и анализ результатов;
  • определение и построение эпюр оползневого давления;
  • рекомендации по мероприятиям инженерной защиты.

Выполняя расчеты, следует учитывать следующие положения СП 436.1325800.2018:

  • Расчетная модель должна быть максимально простой и содержать только существенные элементы. Следует избегать подробного моделирования микрорельефа поверхности земли, мелких геологических элементов или антропогенных образований.
  • Количество расчетных сценариев должно быть минимизировано. Вместе с тем расчеты должны учитывать все наихудшие сценарии (сочетания нагрузок, геометрических и физико-механических условий) как на этапе строительства, так и на этапе эксплуатации в нормальных и особых условиях.

Исходные данные для расчета устойчивости склона

Для расчета устойчивости склонов и откосов необходимо построить расчетные сечения, которые в общем случае содержат следующую основную информацию:

  • инженерно-геологический разрез;
  • существующие и проектируемые сооружения;
  • сведения о нагрузках на склон;
  • гидрогеологические условия;
  • существующие и прогнозируемые области распространения опасных инженерно-геологических процессов;
  • расчетные величины прочностных и деформационных свойств грунтов, слагающих склон;
  • расчетную величину сейсмичности.

Устойчивость откоса грунта, обладающего только трением

Рассмотрим устойчивость частиц идеально сыпучего грунта, слагающего откос.

Вес F этой частицы разложим на две состав­ляющие: N, нормальную к поверхности откоса, и Т, касатель­ную к ней.

где f — коэффициент трения частицы грунта по грунту

Составим уравнение проекций сил на направление поверх­ности откоса НС и условиях предельного равновесия:

Отсюда получим, что в этих условиях

Для обеспечения устойчивости откоса сила, удерживающая частицу Л, должна быть больше сдншающих сил. Обозначим коэффициент надежности γn. Тогда

Гидродинамическое давление подземной воды учитывают путем расчета фильтрационного потока, выходящего через поверхность откоса. Рассчитывают поверхность депрессионной кривой и положение касательной к ней в точке выхода воды через поверхность откоса. По направлению касательной откладывают силу гидродинамического давления D (рис. 8.5, б). Из гидравлики известно, что интенсивность гидродинамического давления на единицу поперечного сечения пористого тела со­ставляет:

Где γω —удельный вес воды; n —пористость грунта; i —градиент напора.

В точке выхода воды через поверхность откоса действуют силы D и F (рис. 8.5,6), которые приводятся к равнодействую­щей R. Сила R отклонена от вертикали на угол [3. Это равно­сильно повороту откоса, показанного па рис. 8.5, а, на угол р. В таком случае устойчивый угол откоса находят из условия

Устойчивость вертикального откоса грунта, обладающего только сцеплением

Пылевато-глинистые грунты часто обладают очень ма­лым углом внутреннего трения, который при приближенном ре­шении задач можно не учитывать. В то же время эти грунты имеют сцепление, благодаря которому могут удерживать вер­тикальный откос. Для строителей при рытье котлованов важно знать, на какую глубину можно разрабатывать грунт с вер­тикальным откосом.

Рассмотрим для такого грунта устойчивость вертикального откоса АВ высотой h (рис. 8.6). Проведем след АС возможной поверхности обрушения в виде плоскости под углом о к гори­зонту, так как наименьшей площадью такой поверхности между точками А и С будет обладать плоскость. По всей этой плоскости будут действовать удельные силы сцепления с. Разобьем призму обрушения ABC на вертикальные элементы толщиной dy (рис. 8.6). Так как элементы сползают одновременно по поверхности АС, взаимодействие между ними не учитываем. Рассмотрим интенсивность сдвигаю­щей силы в точке А. Вес крайнего элемента толщиной dy (без учета второй степени малости) будет dF = yh-l-dy, и сдвигаю­щая сила по наклонной площадке составляет

где Y — удельный пес грунта; 1 — размер призмы, перпендикулярный плоскости чертежа, который в дальнейших задачах везде опускаем.

Удерживающая сила па этом участке обусловлена только удельной силой сцепления

В таком случае коэффициент надежности на участке

Наименьшее значение уп будет при наибольшей величине sin 2

Расчет ведется для отсека, для чего оползающий клин ABC разбивается на п вертикальных отсеков. Делается предположение, что нормальные и касательные напряжения, действующие по поверхности скольжения, в пределах каждого из отсеков оползающего клина определяются весом данного отсека Qt и равны соответственно:

где Аi – площадь поверхности скольжения в пределах 1-го вертикального отсека, Аi = 1li ;

l – длина дуги скольжения в плоскости чертежа (см. рис. 5.6.1).

Препятствующее оползанию откоса сопротивление сдвигу по рассматриваемой поверхности в предельном состоянии τu=σ·tgφ+c

У стойчивость откоса можно оценить отношением моментов удерживающихМs,l и сдвигающих Ms,a сил. Соответственно коэффициент запаса устойчивости определим по формуле

М омент удерживающих сил относительноО представляет собой момент сил Qi.

Момент сдвигающих сил относительно точки О

30, ♯ Давление грунта на ограждающую поверхность

Давление грунта на ограждающую поверхность зависит от многих факторов: способа и последовательности засыпки грунта; естественного и искусственного трамбования; физико-механических свойств грунта; случайных или систематических сотрясений грунта; осадок и перемещений стенки под действием собственного веса, давления грунта; типа сопряженных сооружений. Все это значительно осложняет задачу определения давления грунта. Существуют теории определения давления грунта, использующие предпосылки, позволяющие с разной степенью точности выполнять решения задачи. Отметим, что решение этой задачи выполняется в плоской постановке.

Различают следующие виды бокового давления грунта:

— давление покоя (E), называемое также естественным (натуральным), действующее в том случае, когда стена (ограждающая поверхность) неподвижна или относительные перемещения грунта и конструкции малы (рис.;

Схема давления покоя

— активное давление (Eа), возникающее при значительных перемещениях конструкции в направлении давления и образования плоскостей скольжения в грунте, соответствующих его предельному равновесию (рис. 5.10.2). ABC — основание призмы обрушения, высота призмы 1 м;

Рис. 5.10.2 Схема активного давления

— пассивное давление (Ер), появляющееся при значительных перемещениях конструкции в направлении, противоположном направлению давления и сопровождающееся началом «выпора грунта» (рис. 5.10.3). ABC— основание призмы выпирания, высота призмы 1 м;

Схема пассивного давления

— дополнительное реактивное давление (Еr), которое образуется при движении конструкции в сторону грунта (в направлении, противоположном давлению), но не вызывает «выпора грунта».

Наибольшей из этих нагрузок (для одного и того же сооружения) является пассивное давление, наименьшей — активное. Соотношение между рассмотренными силами выглядит так: Еа

Последнее изменение этой страницы: 2019-06-19; Просмотров: 149; Нарушение авторского права страницы

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector