Угол естественного откоса разрыхленного грунта - Ремонт и дизайн от ZerkalaSPB.ru
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол естественного откоса разрыхленного грунта

Коэффициенты углов естественных откосов

Вид грунтадо 1.5мот 1.5 до 3.0мот 3.0 до 5.0м
Угол между направлением откоса и горизонта в градусахОтношение высоты откоса к его заложению h|mУгол между направлением откоса и горизонта в градусахОтношение высоты откоса к его заложению h|mУгол между направлением откоса и горизонта в градусахОтношение высоты откоса к его заложе-нию h|m
Песок1:0.51:11:1
Супесь1:0.251:0.671:0.85
Сугли-нок1:01:0.51:0,75
Глина1:01:0.261:0.5

После подсчёта объёма земляных работ, подлежащих копке, необходимо определить объёмы работ обратной засыпки и объё- мы земли, подлежащие вывозу со строительной площадки:

Vобр – объём обратной засыпки

Vгр – объём земляных работ, подлежащих копке

Vфунд – объём фундаментов

Vфунд.б. – объём фундаментных балок

Кост. – степень разрыхлённости грунта после его осадки и уплотнения, выраженная в процентах к его естественному состо- янию.

Разрыхлённость грунта – это способность грунта увеличи- ваться в объёме при разработке вследствие потери связей между частицами грунта.

Увеличение объёма грунта характеризуется коэффициентами первоначального разрыхления Кр и остаточного разрыхления Кост

Коэффициент первоначального разрыхления Кр представляет собой отношение объёма разрыхлённого грунта к его объёму в естественном состоянии и составляет:

– для песчаных грунтов — 1.08….1.17

– для суглинистых грунтов — 1.14….1.28

– для глинистых грунтов — 1.24….1.3

Коэффициент остаточного разрыхления (Кост) характеризует остаточное увеличение объёма грунта (по сравнению с естествен ным состоянием) после его уплотнения под действием массы вышележащих слоёв, атмосферных осадков, движения транс- порта или механического уплотнения. Коэффициент остаточ- ного разрыхления обычно на 10-20% меньше величины Кр для этих же грунтов (табл. 2).

Таким образом, надо учитывать, что объёмы грунта, подлежа- щие вывозу со строительной площадки, будут большими, чем этот же грунт в плотном теле. Это увеличение зависит от коэф- фициента первоначального разрыхления, который определяется категорией грунта.

Показатели разрыхлённости грунтов

Первоначальное увеличение объёма после разработки, в %Остаточное разрыхление грунта, в %
глина24-304-7
песок10-152-5
суглинок18-243-6
супесь12-173-5

Строительные организации при подготовке территории к стро- ительству обязаны снимать плодородный слой почвы с целью его дальнейшего использования для благоустроительных работ. Рас- тительный слой почвы перемещают в специальные резервные отвалы за пределы строительной площадки.

В условиях Западного Урала плодородный слой ориентировоч- но равен 10см. Плодородный слой необходимо снимать с контура строящегося здания плюс по 10м с каждой стороны здания.

Кроме того, необходимо предусматривать места для складиро- вания резервного грунта для обратных засыпок траншей и кот- лованов. Эти места должны учитываться при разработке строи- тельного генерального плана, и они не должны служить препят- ствием для выполнения других строительных и монтажных работ.

При выборе типа экскаватора, кроме самого объёма работ, необходимо учитывать глубину копки котлована и характер выемки, место отвала грунта, наличие грунтовых вод и другие технологические факторы.

В зависимости от объёмов земляных работ и глубины копки котлована можно ориентироваться на область применения основ- ных землеройных машин, приведённых в табл. 3.

Дата добавления: 2014-12-30 ; просмотров: 27 ; Нарушение авторских прав

Лабораторная работа 1. Определение величины угла ссыпания и угла естественного откоса зернисто-кускового материала

Лабораторная работа 1. Определение величины угла ссыпания и угла естественного откоса зернисто-кускового материала

Лабораторная работа 1. Определение величины угла ссыпания и угла естественного откоса зернисто-кускового материала

Цель работы. Определить величины угла естественного откоса и угла ссыпания зернисто-кускового материала.

Теоретические положения . Зернисто-кусковой материал, лежащий на наклонной плос­кости (например, на наклонной плоскости бункера, на наклон­ном ленточном транспортере и т. д.), при определенном угле наклона этой плоскости к горизонту начинает ссыпаться по ней. Такой предельный угол наклона называется углом ссыпания.

В зависимости от формы кусочков можно наблюдать два ви­да движения кускового материала по плоскости ссыпания: сколь­жение и перекатывание. Скольжение наблюдается при кусках с развитыми плоскими гранями; передвижению кусков здесь препятствует трение скольжения между гранями кусков и плос­костью ссыпания. Качение наблюдается при форме кусков, близкой к шару. В этом случае передвижение куска происходит как скатывание его, с сопротивлением трения качения.

Предельное состояние покоя слоя кускового материала на наклонной плоскости имеет место тогда, когда сила трения F равна проекции М силы тяжести G на эту плоскость (рисунок 1). С другой стороны, эта же сила трения пропорциональна нор­мальному давлению кускового материала на наклонную плос­кость

F = M = fN ,

откуда f = М / N = tgα

где f – коэффициент трения, определяемый свойствами самого материала, равный tga ;

α – угол ссыпания зернисто-кускового материала.

Если рассматривать весь слой сыпучего материала, который перемещается по гладкой наклонной плоскости, то здесь, даже в случае кусков шарообразной формы, происходит скорее сколь­жение материала по плоскости, чем перекатывание, так как весь материал «течет» сплошной массой.

Угол ссыпания зависит от коэффициента трения материала о плоскость ссыпания, от формы и крупности кусков, от структу­ры поверхности, по которой происходит ссыпание (поверхность может быть гладкой, шероховатой, ребристой и т. д.), а также он влажности самого кускового материала.

Если насыпать зернисто-кусковой материал на горизонталь­ную плоскость, то он располагается на ней в виде конуса. Угол между образующей этого конуса и горизонтальной плоско­стью называется углом естественного откоса зернисто-кускового материала.

Угол естественного откоса всегда больше угла ссыпания (для одного и того же материала), так как наличие неровностей на поверхности материала препятствует скатыванию, а тем более скольжению кусков. Угол естественного откоса в большой степе­ни зависит от фракционного состава кускового материала, ибо последний определяет собой общую структуру поверхности ко­нуса. Эта разнородность размера кусков вызывает в то же вре­мя преимущественное скатывание крупных кусков материала на край насыпаемой кучи, вследствие того, что неровности поверх­ности оказывают меньшее сопротивление перекатыванию крупн ых кусков, чем мелких (рисунок 2). Неравномерное распределение кусков по крупности необходимо учитывать при загрузке насадочных абсорберов, шахтных печей и т. д., так как в местах рас­положения крупных кусков, т. е. на-периферии, получается боль­шее сечение каналов и газ пойдет преимущественно по этим ка­налам, имеющим меньшее гидравлическое сопротивление.

Тонко измельченные материалы имеют больший угол естест­венного откоса, т. е. меньшую сыпучесть, в связи с более разви­той поверхностью трения.

Угол естественного откоса значительно зависит от влажности материала, потому что вода, располагаясь на поверхности кус­ков, вызывает слипание их и тем самым затрудняет движение отдельных кусков. Чем меньше куски материала, тем больше проявляется влияние влажности; но чрезмерное увлажнение приводит к увеличению послойной текучести жидкости между кусочками материала, и угол естественного откоса вновь умень­шается (таблица 1).

Читать еще:  Финишная грунтовка по металлу

Угол естественного откоса, град, для породы

Расчет устойчивости откосов

Вы будете перенаправлены на Автор24

Угол естественного откоса

Угол естественного откоса – это угол, при котором неукрепленный каким-либо образом откос песчаного грунта может сохранять равновесие или угол наклона поверхности грунта в свободно насыпанном состоянии (без уплотнения) к горизонтальной плоскости.

Следует отметить, что определение угла естественного откоса грунта имеет важное значение при проектировании различных грунтовых сооружений, например:

  • насыпные плотины;
  • намывные плотины;
  • котлованы;
  • дамбы и т.д.

Значения угла естественного откоса вычисляются также для проведения мероприятий по их укреплению.

Сущность расчета

Под откосом понимается поверхность, образованная в ходе хозяйственной деятельности человека. Такая поверхность ограничивает природный горизонтальный массив либо искусственно возведенную выемку (либо насыпь).

Склоном обычно называют откос, образованный природным путем, т.е. поверхность, ограничивающую массив грунта естественного сложения. При неблагоприятных сочетаниях разнородных факторов массив грунта, ограниченный склоном или откосом может перейти в неустойчивое состояние и потерять равновесие.

К основным причинам потери устойчивости грунтовых откосов относят:

  • устройство непозволительно крутого откоса или подрезка склона, находившегося в состоянии, приближающемся к предельному;
  • увеличение внешних нагрузок (возведение зданий или сооружений в непосредственной близости, складирование материалов вблизи откосов и т.д.);
  • неправильное определение расчетных характеристик грунта или снижение его сопротивления сдвигу вследствие повышения влажности;
  • воздействие гидродинамического давления, сейсмических сил или динамических воздействий различной природы (движение техники, забивка свай, работы промышленного оборудования и т.д.).

Для обеспечения устойчивости откосов в первую очередь необходимо назначить угол его заложения, т.е. угол между горизонтальной площадкой и наклонной поверхностью. Одним из наиболее распространенных способов расчета угла заложения и оценки устойчивости откосов насыпей и естественных склонов является метод круглоцилиндрических поверхностей скольжения. Сущность данного метода заключается в получении данных о форме поверхностей скольжения при оползнях вращения опытным путем.

Готовые работы на аналогичную тему

Главная задача расчета заключается в определении коэффициента устойчивости откоса выемки (или насыпи) для максимально опасной поверхности скольжения.

Основные параметры расчета

В случаях, когда сопротивление частиц сдвигу определяется исключительно силами трения, угол естественного откоса совпадает с углом внутреннего трения (φ = φ0). Однако, в реальном проектировании сопротивление грунта сдвигу зависит от множества факторов (например, от зацепления частиц).

Таким образом, величина силы трения будет определяться по формуле:

φ = φт + φз + φс + …

φт – составляющая, привносимая за счет сил трения, φз – то же, за счет зацепления, φс – то же, за счет среза частиц.

Следует заметить, что составляющая φт в большей мере зависит от минерального состава грунта, а также от наличия поверхностных пленок. Составляющая φз зависит от окатанности и формы частиц грунта.

Угол естественного откоса является легко определяемой и весьма удобной для последующих расчетов характеристикой прочности несвязных грунтов. Вышеописанный способ актуален для определения величины внутреннего трения сыпучих грунтов (например, чистых песков). Следует заметить, что при помощи такой методики можно определить угол внутреннего трения лишь приближенно. В чистых песках величина угла внутреннего трения приближенно равна углу естественного откоса.

На практике угол естественного откоса определяют на приборе УВТ, состоящем из металлического столика-поддона, резервуара и обоймы. Поддон закрепляется на трех опорах и перфорируется небольшими отверстиями для водонасыщения грунта. Шкала, предусмотренная в центре столика, имеет деления от 5 до 45 градусов. В соответствии с этой шкалой и определяется угол естественного откоса.

Если требуется определить угол естественного откоса грунта в воздушно-сухом состоянии, на столик устанавливают обойму, в которую насыпается песок до полного заполнения. После заполнения песок незначительно уплотняется. После этого обойму вертикально поднимают и по вершине образовавшегося конуса берут отсчет по вышеупомянутой шкале.

Данный опыт повторяют трижды, после чего определяют среднее арифметическое значение. Расхождение между повторениями не должно превышать 1 градус.

Если требуется определить угол естественного откоса грунта в водонасыщенном состоянии, то после заполнения обоймы грунтом резервуар заполняют водой. После полного насыщения пробы определяется угол естественного откоса вышеописанным методом.

На значение угла естественного откоса несвязных грунтов влияет однородность гранулометрического состава. Например, монодисперсные грунты, как правило, обладают большими значениями φ, чем полидисперсные грунты с аналогичным минеральным составом. Так происходит потому, что в смеси небольшие частицы заполняют образующиеся промежутки между крупными, что облегчает их смешение по поверхностям откосов.

Большое влияние на трение также оказывает количество воды в грунте (ее присутствие снижает значение φ). В песчаных грунтах повышенная влажность значительно снижает угол внутреннего трения.

Угол естественного откоса

На практике данными о величине угла естественного откоса пользуются при определении площади штабелирования груза, количества груза в штабеле, объема внутритрюмных штивочных работ, при подсчете величин давления груза на ограждающие его стенки, при расчетах остойчивости судов, учитывающих перемещение груза при крене судна, а также при расчетах погрузочно-разгрузочных и транспор­тирующих устройств.

Справочные данные об углах естественного откоса для одних и тех же насыпных грузов в разных источниках иногда существенно отличаются друг от друга, так как замеры углов производятся раз­личными методами и при разном исходном состоянии исследуемого материала. Например, для пшеницы величина угла естественного откоса, по данным различных авторов, изменяется от 16 до 38°, для углей – от 30 до 45°, для рудных концентратов – от 25 до 50°, для некоторых видов руд – от 30 до 45° и т. д.

Величина угла естественного откоса груза зависит от формы, размера, шероховатости и однородности грузовых частиц, влажно­сти массы груза, способа его отсыпки, исходного состояния и мате­риала опорной поверхности.

Применяются различные методы определения величины угла естественного откоса; к числу наиболее распространенных относятся способы насыпки и обрушения.

Экспериментальное определение сопротивления сдвигу и основных параметров груза производится обычно методами прямого среза, одноосного и трехосного сжатия.

Испытания свойств груза методами прямого среза применимы как к идеальным, так и к связным сыпучим телам. Метод испытания на одноосное (простое) сжатие – раздавливание применим только для оценки общего сопротивления сдвигу связных сыпучих тел при условном допущении, что во всех точках испытываемого образца сохраняется однородное напряженное состояние. Наиболее надежные результаты испытаний характеристик связного сыпучего тела дает метод трехосного сжатия, позволяющий исследовать прочность образца груза при всестороннем сжатии.

Читать еще:  Чем заменить грунтовку силк пластер

Определение угла естественного откоса мелкозернистых веществ (размеры частиц менее 10 мм) производится с помощью «наклонного ящика». Угол естественного откоса в этом случае – угол, образованный горизонтальной плоскостью и верхней кромкой испытательного ящика в тот момент, когда только начнется массовое осыпание вещества в ящике. Размеры ящика: длина 600 мм, ширина 400 мм, высота 2000 мм. С помощью угломера измеряют угол между верхней кромкой ящика и горизонтальной плоскостью с точностью до 0,5 °. Угол естественного откоса рассчитывают как среднеарифметическое из трех измерений и округляют до 0,5 °.

Судовой метод определения угла естественного откоса вещества используют при отсутствии «наклоняемого ящика». В этом случае угол естественного откоса – это угол между образующей конуса груза и горизонтальной плоскостью. Образец испытуемого вещества высыпают так, чтобы образовался начальный конус. Затем оставшуюся часть очень осторожно высыпают с высоты нескольких миллиметров на вершину конуса так, чтобы форма конуса была симметричной. Угол измеряется в четырех точках на уровне полувысоты конуса, расположенных вокруг конуса с шагом 90 °. То же повторяется с двумя другими пробами. За величину естественного откоса принимают среднее арифметическое двенадцати измерений, округленное до 0,5°.

Практика производства замеров углов естественного откоса в натурных условиях показывает, что их вели­чина несколько изменяется в зависимости от метода отсыпки груза (струей или дождем), массы исследуемого груза, высоты, с которой производится экспериментальная отсыпка.

Для определения угла естественного откоса в условиях пор­та рекомендована следующая методика. Зерно из бункера объемом 2 м 3 высыпается с высоты 2,5 м через отверстие 400х400 мм на ровную бетонную или асфальтированную площадку. Под углом естественного откоса понимается среднее арифметическое значение углов наклона к горизонту образую­щих зернового конуса, измеренных с четырех его сторон. Практическое использование методики показало, что она успешно может быть применена для сухих насыпных грузов со сравнительно однород­ными частицами ограниченного размера, а для увлажненных и крупнокусковых грузов пользоваться этим методом затруднительно из-за зависания материала. Поэтому для производства отсыпки груза при определении угла естественного откоса более целесооб­разно использовать ленточный или скребковый транспортер, обеспе­чивающий сбрасывание груза с высоты 2,5 м.

Угол естественного откоса можно определить и другим способом. Напри­мер, зерно насыпается в ящик с размерами 400х400х1000 и отверстием 300X400, расположенным внизу одной из стенок. После открытия задвижки зерно высыпается в от­гороженный двумя стеклянными стенками лоток. Угол наклона поверхности зерна к горизонту принимается за угол естествен­ного откоса a.

Для быстрых измерений удобен способ Мооса, при котором зерно насыпают в прямоугольный ящик со стеклянными стенками размерами 100х200х300 мм на 1/3 его высоты. Ящик осторожно поворачивают на 90° и измеряют, угол между поверхностью зерна и горизонтальной (после поворота) стен­кой. Опыты проводят при всех указанных способах по 3 раза.

В лабораторных условиях для определения углов естественного откоса используют приборы различных систем, общим недостатком которых является возможность производства экспериментов только с грузами, имеющими относительно небольшие и однородные гру­зовые частицы.

Наиболее распространенными методами определения угла естественного откоса в лабораторных условиях являются следую­щие.

1. В ящик прямоугольной формы размером 10х20х30 мм (или больше) насыпают исследуемый материал так, чтобы свободная его поверхность была горизонтальной, а затем осторожно поворачи­вают его на угол 45 или 90° и после прекращения осыпания груза определяют угол естественного откоса a с помощью транспортира или путем замера высоты h и длины L заложения откоса и вычисления тангенса угла a (tga = L/h)

2. Диск диаметром 10 см (или больше), имеющий вертикальный тарированный стержень, опускают в стеклянную банку и засыпают исследуемым материалом. Затем диск плавно вынимают. Высота оставшегося на диске конуса материала показывает величину угла естественного откоса, значения которого нанесены на стержне.

3. В воронку с диаметром трубы 5 мм (или больше, в зависи­мости от гранулометрического состава материала) осторожно засыпают исследуемый материал, и затем воронку медленно под­нимают по мере образования конуса груза. Полученный таким об­разом конус замеряют угломером с четырех сторон и среднее зна­чение принимают за величину угла естественного откоса исследуе­мого материала.

Вне зависимости от метода определения угла естественного от­коса каждый опыт необходимо проводить не менее трех раз для получения наиболее характерных средних значений.

Коэффициент разрыхления грунта

Коэффициент разрыхления грунта является одним из важных параметров при проведении строительных работ на этапе выкопки котлована под здание. Объем трудовых и временных затрат напрямую определяется этими данными. Соответственно меняются и затраты на производимые действия.

Типы грунта с точки зрения строительства

Определение грунта в строительных работах это очень важный этап, от которого зависит дальнейшая устойчивость постройки.

  • скальные — водоустойчивые и плохо деформирующиеся породы, залегающие сплошным массивом (возможно, с трещинами);
  • нескальные — осадочные не жестко структурированные породы (раздробленные и дисперсные);
  • крупнообломочные — несвязанные обломки горной породы: валуны, галька, гравий (хороший материал для дробления в щебеночный продукт и неплохое основание для стройки);
  • песчаные, плохосжимаемые и состоящие из минеральных частиц + мизерного процента глины (чем больше крупицы в составе, тем лучше они выдерживают нагрузку);
  • пылевато-глинистые состоят из пыли и глины, поэтому проседают даже под собственным весом и набухают;
  • глинистые это тугопластичные и состоящие из микрочастиц грунты с водонаполненными порами (в зимний период глину из-за этого пучит) — способность выдержки веса зависит от увлажненности (при высокой глина выдерживать малую нагрузку);
  • лессовые и лессовидные это разновидность глинистых грунтов с пылевыми частицами и известняком — в сухом виде очень пористые и прочные, а при увлажнении дают значительную осадку (непригодны для основания под постройки);
  • плывуны образуются из пылеватых песков с илистыми и глинистыми примесями и имеют вязко-текучее подвижное тело (плохо пригодны в виде основания);
  • биогенные почвы состоят из песка и пылевато-глинистых компонентов + много органики (характеризуются низкой несущей способностью из-за постепенного разложения органики и уменьшения грунтовой прослойки);
  • насыпные искусственные и природные грунты — оба варианта неоднородны по структуре, поэтому их сложно использовать для основания под постройки (возможность использования насыпного варианта анализируется для каждого случая отдельно);
  • намывные, образующиеся нечасто из-за очистки водоемов, имеют хорошее состояние для их использования в виде основания для построек.
Читать еще:  Фунгицидная грунтовка для стен

После выявления разновидности почвы на участке строительства выстраивают последующий план действий. Допустимы и смеси, как песчано-гравийная смесь — природного или искусственного происхождения (последняя обогащенная).

Дополнительная информация! Транспортировка и обратная засыпка ям, траншей и канав в строительных работах с помощью ПГС это хороший вариант. ПГС + бетон используют для заливки фундамента.

Важные свойства

Специфические свойства грунта определяются его компонентами. Для возведения зданий надо просчитывать устойчивость грунта при постройке на нем здания.

Показатели плотности, влажности, прочности, сцепления, кусковатости, разрыхляемости, угла естественного откоса и размываемости определяют технологию производства. Также они влияют на трудоемкость процесса и затраты на земляные работы по смете.

Плотностью P это соотношение массы грунта к объему, который он занимает. А влажность — водной массы в порах к весу твердых грунтовых частиц. Влажность меньше 5 % обозначает, что почва сухая, выше 30 % — мокрая, показатель в границах указанных цифр — это относительный норматив.

Для увеличения транспортной производительности и понижения трудозатрат грунт доводится до нужной влажности. Она определяется гранулометрическим составом и подходящей плотностью. При большой влажности глинистого грунта выявляется показатель липкости. Его повышенное значение осложняет погрузку и выгрузку (из ковша экскаватора или кузова), влияет на функционирование конвейера или движение транспорта.

Прочность характеризуется способностью сопротивления внешним силовым факторам. Для анализа прочности используют коэффициент крепости. Параметр кусковатости разрыхленного грунта зависит от процентного содержания разных фракций. Разрыхляемость это последний значимый показатель.

По проекту некоторые показатели могут быть скорректированы на месте, чтобы достигнуть нужного уровня безопасности основания для последующего строительства.

Зачем нужно определять разрыхление грунта

В комплексе при строительстве должно быть обеспечено следующее:

  • определен тип фундамента, его размеры и глубина закладки;
  • выбраны методы улучшения состава;
  • установлен вид и объем инженерных мероприятий по освоению участка под строительство;
  • выбраны способы воспроизводства запланированных работ по благоустройству оснований.

Предварительный анализ грунтового разрыхления и трамбовки помогает понять дальнейшую последовательность действий. Грунт всегда уплотняется по мере естественного или механического влияния на него.

Значит его итоговый объем уменьшается. Это нужно учитывать при возведении на участке здания. Но при освобождении почвы работает обратная схема. Параметр рыхления зависит от состава, влажности, плотности и сцепления. Коэффициент позволяет выявить возможное увеличение объема земли после ее извлечения из котлована, что важно для перевозки.

Разрыхлять специально грунт не приходится. Это естественный процесс, который происходит из-за разрыва связей между грунтовыми частичками. Стоимость земляных работ в соответствии с этим увеличивается. Коэффициент разрыхления суглинка, горных пород, песка и т.д. разный.

Понятие коэффициента разрыхления грунта

Максимально четкий вариант просчетов — взвесить землю после разработки. Воплотить эту процедуру можно на стройплощадке.

Для разных грунтовых пород строительными нормами и действующим СНиПом установлен стандартный норматив для коэффициента рыхления грунта, указывающий более или менее точное увеличение объема почвы после его извлечения из места залегания. Строительные нормативы на Украине определены в ДБН от Минрегионбуд.

Коэффициент разрыхления — отношение объема грунта в разрыхленном виде к его объему в «монолитном». Данная величина всегда больше единицы из-за образования пустот и трещин. Рассматриваемый коэффициент зависит от однородности, формы и расположения фрагментов породы.

Другими словами коэффициент разрыхления увеличивается вместе с увеличением плотности. Когда он раздроблен, то разрыхляется он гораздо хуже. От других физических свойств коэффициент зависит меньше.

Коэффициент первоначального разрыхления

Перечень категорий грунта с параметрами по первоначальному разрыхлению:

  • коэффициент разрыхления песка влажного, супеси, рыхленного суглинка при плотности около 1,5 тонн на кубический метр равен около 1,2 (плюс-минус 1-2 десятых долей);
  • песок рыхлый невлажный: при плотности примерно в 1,4 равен 1,1;
  • простой суглинок, разноразмерный гравий, легкая глина: в среднем 1,6 и 1,2;
  • обычная глина, плотный суглинок: примерно 1,7 и 1,4;
  • тяжелая глина, нетяжелый горный грунт, сланцы, суглинок с щебнем, гравием: около 2 и 1,4.

Коэффициент остаточного разрыхления

Это показатели увеличение объема почвы по отношению к первичному (при его залегании), остающееся после уплотнения насыпей. Они регламентируются специальным приложением о земляных работах (в том числе с помощью механического труда). В нем данные приведены в таблице. По каждому пункту указано разрыхление в остатке.

  • осадочный камнеподобный горный грунт — 11-15 %;
  • кремнистый микропористый осадочный — 11-15;
  • разборно-скальный — 15-20;
  • гравийно-галичный — 5-8;
  • суглинисто-супесчаный — 3-6;
  • особо сложная в разработке глина — 6,9;
  • глина жирного и мягкого типа — 4-7, сланцевого — 6-9;
  • песок — 2-5;
  • скальный грунт — 20-30;
  • суглинок легкого типа — 3-6, твердый — 4-7, тяжелый — 5-8;
  • супесь — 3-5;
  • торфяная порода — 8-10;
  • черноземная почва — 5-7;
  • шлаковое сырье — 8-10.

При складировании по времени от 4х месяцев и больше и при нахождении под осадками грунт становится плотнее. Поэтому показатель разрыхления, уменьшается.

Расчет объема грунта для вывоза

Необходимо проводить и дополнительные вычисления. Например, по объему почвы, которая подлежит вывозу помимо устранения строительного мусора (который также требует трудозатрат).

Исходные данные по котловану:

  • ширина – 3 м;
  • глубина – 3 м;
  • суммарная фундаментная длина – 60 м;
  • почва — глина.
  1. Определить котлованный объем: Vk = 60x3x3= 540 м3.
  2. Просчет коэффициента разрыхления глины: Kp = 1,2х540 = 648 кубических метров.

Расчет объема лишнего грунта после обратной засыпки

Объемы обратной засыпки вычисляются с учетом того, что проект планируемого здания предполагает наличие подвала. Обратная засыпка карьера будет делаться тогда лишь для пазух по периметру, учитывая коэффициент остаточного разрыхления.

Формула: Vпазух = Vкотлована-S*h. S — площадь здания по контуру блоков фундамента, а h — пазушная глубина. Например, Vпазух = 2000-355*3,5 = 757,5 м3.

Грунт обратной засыпки, как правило, подлежит уплотнению слоями. Засыпают его бульдозерами, а уплотняют электротрамбовочной машиной. Объем последней работы исчисляется в кубических метрах.

Вопросы

Олег, 41 год (г. Саратов): Какие госты работают на эту тему?

Ответ: ГОСТ 25100-2011 и 25100-95 о классификации грунтов,12248 — об определении прочности и деформируемости, 17245-79 — об определении временного сопротивления при одноосном сжатии, 23161-2012 — об определении параметра просадочности, 28622-90 и 28622-2012 — об определении степени пучинистости и т.д.

Виталий, 26 лет (г. Сыктывкар): Ведется ли сейчас разработка участков с использованием взрывчатки?

Ответ: Да. Иногда неподходящему грунту требуется «демонтаж» взрывом или послойная резка скрепером с дальнейшей заменой на приемлемый. Со взрывом образуется конусообразное углубление, а земля частично выбрасывается из нее наверх.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector