0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол естественного откоса грунта суглинок

Особенности уплотнения песчаных и глинистых грунтов

Меры по обеспечению устойчивости откосов грунта

Обеспечение устойчивости откосов крайне важно во всех случаях, когда работы выполняются в котловане или траншее с вертикальными стенками. Для обеспечения устойчивости откосов траншеи трубоукладчики и краны не должны устанавливаться у ее края.

Для обеспечения устойчивости откосов земляного полотна на крутых-косогорах, берегах рек и морей служат подпорные стены; а при подходах к большим мостам для защиты их опор от подмыва при паводках и повреждения льдом — регуляционные сооружения.

Необходимость обеспечения устойчивости откосов, как естественных, так и искусственных, а вместе с тем и связанных с ними сооружений вызывается неизбежным ослаблением перенасыщенных водой грунтов, переходящих при оттаивании из твердого состояния в разжиженное с ничтожным сопротивлением сдвигу.

При устройстве лотков, особенно глубоких на месте кюветов, принимают меры по обеспечению устойчивости откоса выемки, подрезаемого, траншеей — для лотка. Для этого траншею надежно крепят плотно устанавливаемыми распорками, а затем после устройства лотка тщательно уплотняют засыпку менаду стенками лотка и грунтом. Допускаемая скорость течения воды в канаве и лотке зависит от вида укрепления откосов и дна или от рода грунта, если откосы и дно канавы не укреплены.

Траншеи, разработанные в зимнее время, при наступлении оттепели должны быть осмотрены, а по результатам осмотра должны быть приняты меры к обеспечению устойчивости откосов или креплений.

Ограниченно годные: глинистые грунты в мягкопластичном состоянии ( коэффициент консистенции более 0 25) допускаются только при возможности их уплотнения транспортными средствами, обеспечения устойчивости откосов и прочности основной площадки; верхний слой грунта, содержащий дерн, допускается в насыпи высотой более 1 At на местности с поперечным уклоном менее 1: 5, при этом дерн размещается в нижнем слое; слежавшиеся котельные шлаки, содержащие не более 15 % несгоревшего угля, допускаются в насыпи высотой до 6 м и лишь в незатопляемых местах с обязательным послойным уплотнением независимо от способа укладки; основные металлургические шлаки применяются только при условии, если они пролежали в отвалах не менее одного года.

Угол естественного откоса определяется таким его значением, при котором грунт находится в предельном равновесии. В зависимости от этого угла назначают крутизну откоса, при которой обеспечивается их устойчивость. Обеспечение устойчивости откосов — важней шее требование, предъявляемое к земляным сооружениям.

Производство работ, связанных с нахождением работников в выемках с вертикальными стенками без креплений в нескальных и не замерзших грунтах выше уровня грунтовых вод и при отсутствии вблизи подземных сооружений, допускается при их глубине, м, не более:

1 — в насыпных неслежавшихся и песчаных грунтах;

1,5 — в суглинках и глинах.

Особенности уплотнения песчаных и глинистых грунтов

Уплотнение песчаных грунтов происходит за счет более плотной укладки частиц. Уплотнение глинистых грунтов происходит за счет более компактной укладки минеральных частиц и уменьшения толщины их водноколлоидных оболочек.

При механическом воздействии вибрационными, трамбующими и подобными механизмами хорошо уплотняются лишь маловлажные рыхлые песчаные и неводонасыщенные грунты, имеющие жесткие контакты между минеральными частицами, которые при этих воздействиях легко нарушаются, что и обусловливает перегруппировку частиц и более плотную их упаковку. В водонасыщенных же песках динамические нагрузки вызывают незначительные напоры в воде, грунт взвешивается в некоторой области и при определенных условиях разжижается, растекаясь по большой площади. Однако чем больше внешнее давление на поверхность грунта, подвергаемому динамическому воздействию (например, вибрационному), тем менее оно эффективно, так как труднее преодолеваются усилия в точках контакта частиц.

В глинистых грунтах, которые вследствие их связности при динамических нагрузках уплотняются очень мало, возникающие в воде напоры при незначительной водопроницаемости этих грунтов погашаются на весьма молом расстоянии и разжижения не происходит.

Необходимо детально исследовать грунт, так как под влиянием вибрации могут образоваться нежелательные усадки, вызываемые уплотнением песчаных грунтов и связанных грунтов за счет отдачи воды.

Катки на пневматических шинах, расположенных вплотную друг к другу, обеспечивают большую равномерность укатки верхнего слоя ( до 60 см) и пригодны для уплотнения глинистых и песчаных грунтов; применяются при окончательной укатке грунта после предварительного его уплотнения кулачковыми катками, а также при уплотнении площадок, дорожных оснований и покрытий.

Вопрос №7. Грунты и их свойства. Разрыхляемость грунтов. Откосы.

Грунтамив строительстве называют горные породы и почвы, представляющие собой сложное тело, состоящее из минеральных частиц и органических примесей. Свойства и качество грунта влияют на устойчивость земляных сооружений, трудоемкость разработки и стоимость работ. При выборе наиболее эффективного способа производства работ необходимо учитывать следующие основные характеристики грунтов:плотность, влажность, сцепление, размываемость, разрыхляемость и угол естественного откоса. Важными показателями являются также влагоемкость, водопроницаемость, водоудерживающая способность и размываемость грунтов.

Плотностью (или объемной массой) называется масса 1 м3 грунта в естественном состоянии в плотном теле. Средняя или насыпная плотность песчаных грунтов составляет 1,6-1,7 т/м3, глинистых — до 2,1 т/м3, скальных — до 3,3 т/м3.

Влажностью называется степень насыщения пор грунта водой, которую определяют отношением массы воды в грунте к массе твердых частиц грунта и выражают в процентах. При содержании воды до 5% грунты относятся к сухим, влажные грунты содержат до 30% воды, в мокрых содержится более 30% воды.

Сцеплениеопределяют начальным сопротивлением грунта сдвигу; сцепление зависит от вида грунта и его влажности. Сила сцепления для песчаных грунтов составляет 0,003-0,05 МПа, для глинистых — 0,005-0,2 МПа. От плотности и сцепления в основном зависит производительность землеройных машин.

Размываемость грунта обусловливается уносом его частиц текучей водой из земляных сооружений. Скорость движения воды по песчаному грунту допускается для мелких песков 0,15 м/с, для крупных — 0,8 м/с, по плотным глинистым грунтам — до 1,8 м/с.

Разрыхляемость грунта — нарушение естественной структуры при его разработке, сопровождаемое увеличением в объеме. Степень разрыхления грунта определяется коэффициентом первоначального разрыхления, представляющим собой отношение объемов грунта в разрыхленном и естественном состояниях. Для глинистых грунтов коэффициент первоначального разрыхления составляет 1,24-1,32, для песков — 1,08-1,28, суглинков и супесков — 1,08—1,32. Более плотные грунты, включая скальные, дают большее увеличение объема — до 50%. При расчете транспортных средств для перевозки грунта, определении производительности землеройных машин, проектировании кавальеров и т. д. необходимо учитывать коэффициент первоначального разрыхления. Принято все подсчеты, связанные с земляными работами, выполнять для грунта естественной (природной) плотности — «в плотном теле».

Разрыхленный грунт, длительное время пролежавший в насыпи, подвержен самоуплотнению за счет действия веса верхних слоев на нижние и от действия атмосферных осадков. Плотность грунта, пролежавшего в насыпи более четырех месяцев, а также грунта, подвергавшегося механическому уплотнению, определяется лабораторным путем. Если объем грунта на объекте не превышает 1000 м3, при расчетах пользуются коэффициентом остаточного разрыхления, приводимым в справочниках (например, для песчаных грунтов он составляет 1,01-1,025, глин — 1,04-1,09, суглинков — 1,015-1,05).

В зависимости от трудности и трудоемкости разработки грунтов механизированным способом мерзлые и не мерзлые грунты делят на группы. Грунты минерального происхождения по своему составу, прочности и трудности разработки делятся на скальные, конгломераты и нескальные.

Устойчивостью земляных сооружений называется их способность сохранять проектную форму и размеры и обусловливается равновесием масс под воздействием внешних и внутренних сил. Устойчивость зависит от угла естественного откоса грунта, который образуется плоскостью откоса с горизонтальной плоскостью поверхности грунта (величина угла естественного откоса определяется опытным путем). Связность грунтов изменяется в зависимости от их влажности и характеризуется углом естественного откоса, т. е. углом, который образуется откосом свободно насыпанного грунта и горизонтальной плоскостью. В зависимости от числа пластичности связные грунты делятся на супесь, суглинок и глину.

Крутизна откосов насыпи или выемки характеризуется отношением высоты откоса Н к его заложению или тангенсом угла наклона откоса к горизонту (рис. 5). Наибольшая крутизна откосов зависит от высоты насыпи или глубины выемки, характеристики грунтов (угла внутреннего трения, сцепления, влажности) и условий производства работ. Рис. 5. Элементы откоса: а — насыпи; б — выемки; Н — высота откоса; l — проекция откоса на горизонтальную плоскость; α — крутизна откоса
Читать еще:  Формула расчета грунта м3 траншеи с откосами

Вопрос 8. Технология разработки котлована и траншеи экскаватором. Акты на скрытые работы (вскрытие котлована)

Способы разработки грунта принимаются в зависимости от конструкции и глубины заложения фундамента. Грунты под малозаглубленные ленточные и столбчатые фундаменты могут разрабатываться вручную, а выемка грунта под заглубленные фундаменты и фундаменты с цокольным (подвальным) этажом разрабатывается механизированным способом. Учитывая то, что ширина индивидуального дома редко превышает 12-15 м, разработку котлована можно вести экскаватором, оборудованным обратной лопатой, с емкостью ковша 0,25-0,65 м3 на гусеничном или колесном шасси или экскаватором-погрузчиком.Недобор грунта разрабатывается вручную перед устройством фундамента. При разработке грунта в радиус действия экскаватора не должны попадать провода линии электропередач. Грунт, выбираемый из котлована (траншеи), необходимо размещать на расстоянии не менее 1 м от края разработки. Рытье котлована и траншей с вертикальными стенками без крепления можно производить только в грунтах естественной влажности и при отсутствии грунтовых вод.

Глубина выемки, м, не должна превышать:

в песчаных и гравелистых грунтах — 1;

в супесчаных — 1,25;

в глинах и суглинках — 1,5;

в особоплотных грунтах — 2,0.

Разработка котлована и траншей на глубину, превышающую пределы, указанные выше, производится с откосами или с креплением вертикальных стенок. Разработку грунта в котлованах или траншеях при переменной глубине заложения фундаментов следует вести уступами

Акт скрытых работ (полное название “акт освидетельствования скрытых работ, ответственных конструкций и участков сетей инженерно-технического обеспечения”)- это официальный документ, который составляется после приемки представителями подрядчика, заказчика и авторского надзора выполненных ответственных работ, которые будут скрыты последующими работами. Он говорит о том, что эти ответственные работы выполнены в надлежащем качестве.

Скрытые работы подлежат актированию. К ним относятся:

1. Земляные работы — по разработке котлованов, траншей для фундаментов и инженерных коммуникаций. В акте указываются характеристики грунтов, состояние основания, наличие грунтовых вод и их отметки, размеры котлована с указанием высотных отметок, уклонов и откосов, устройство искусственного основания под фундаменты или трубопроводы и другие конструктивные особенности.

2. Земляные сооружения — по устройству постелей под массивы сооружений, строительство дамб и т.д. В акте указывают данные о карьере, подготовку оснований, замену грунта основания, карты намыва, обваловку, заделку водосборных устройств и т.д.

3. Фундаменты — по устройству подземной части сооружения. В акте указывают вид материала и конструктивных элементов, вид фундаментов и его конструктивные особенности, армирование, вид и качество изоляционных работ, наличие технологических отверстий и ниш с указанием их привязки.

4. Монтаж железобетонных конструкций предусматривает укладку арматурных каркасов и закладных деталей, их сварку антикоррозионную обработку, устройство опалубки для укладки бетона, опирание сборных элементов. В акте указывают вид арматурной стали, способ скрепления арматурного каркаса, марку бетона и вид уплотнения, способ, время и температуру твердения, виды защиты и т.д.

5. Каменные конструкции — устройство стен. В акте указывают вид кладки, способ армирования, марку раствора, устройство температурных осадочных швов, подготовку мест для опирания ферм и несущих балок, устройство дымовых и технологических каналов, разделки, вводные отверстия, виды защиты и другие особенности, предусмотренные проектом

Дата добавления: 2015-02-16 ; просмотров: 16 | Нарушение авторских прав

Свойства грунтов

Свойства грунта — это особенности грунта, обусловленные его составом, взаимоотношением и взаимодействием слагающих грунт компонентов (твердых, жидких и газообразных). Различают физические, механические, магнитные, электрические, водные и др. свойства. Здесь мы остановимся на физических и механических свойствах, поскольку на их основании производятся расчеты фундаментов, подпорных стенок и других элементов сооружений, взаимодействующих с геологической средой. Кроме того, свойства являются исходными данными (не единственными, но очень важными) для изучения и прогнозирования развития экзогенных геологических процессов.

Физические свойства грунтов

Физические свойства грунтов — особенности грунтов, определяющие их поведение в естественных условиях и при взаимодействии с продуктами инженерной и хозяйственной деятельности человека. Ниже приведены основные физические свойства грунтов.

1. Гранулометрический состав (для дисперсных грунтов) — количественное содержание в грунте первичных частиц по фракциям (размерам зерен), выраженное в процентах от общей массы грунта.

2. Плотность . При этом различают плотность грунта и плотность скелета грунта (т.е. частиц грунта).

3. Пористость и коэффициент пористости. Пористость характеризует объем пор в единице объема грунта, а коэффициент пористости — отношение объема пор к объему твердой компоненты.

4. Влажность . Различают естественную влажность — т.е. влажность образца на момент его отбора из горной выработки (причем она может быть весовой, т.е. отношение массы воды к массе скелета грунта, или объемной, т.е. отношение объема воды в грунте к объему всего грунта); степень влажности (коэффициент водонасыщения) — относительную долю заполнения пор водой в данном грунте; гигроскопическую влажность — отношение массы воды, удаляемой из образца воздушно-сухого грунта, высушенного при температуре 105 градусов до постоянной массы, к массе высушенного грунта.

5. Пределы пластичности (только для глинистых грунтов). Пластичность — это способность грунта деформироваться без разрыва сплошности под воздействием внешних сил и сохранять полученную форму после прекращения воздействия. Влажность, при которой грунт переходит из пластичного состояния в текучее называется верхним пределом пластичности . Влажность, при которой грунт переходит из пластичного состояния в твердое — влажность нижнего предела пластичности . Разность между значениями влажности для верхнего и нижнего пределов называется числом пластичности . Показатель консистенции — отношение разности весовой влажности и влажности нижнего предела к числу пластичности.

6. Набухаемость грунтов (только для глинистых) — способность грунтов увеличивать свой объем при замачивании. при этом развивается давление набухания.

7. Усадочность (для глинистых и органогенных грунтов) — способность грунтов уменьшать свой объем при обезвоживании.

8. Размокаемость — способность грунтов при замачивании в спокойной воде терять свою связность и превращаться в рыхлую массу.

9. Размягчаемость — способность скальных грунтов снижать свою прочность при взаимодействии с водой.

Механические свойства грунтов

Механические свойства грунтов — это те свойства, которые проявляются при приложении к грунтам нагрузок. Основные свойства:

1. Сжимаемость дисперсных грунтов — способность уменьшаться в объеме под действием внешнего давления. Компрессионная сжимаемость (компрессия) — способность грунта сжиматься под постоянной, ступенчато возрастающей нагрузкой.

2. Просадочность — способность лессовых и других пылеватых грунтов к уменьшению объема при дополнительном увлажнении. Различают просадки при природном давлении (от веса вышележащего грунта) и дополнительном (от веса сооружения).

3. Прочность — способность грунта сопротивляться разрушению под влиянием механических напряжений. Параметры прочности соответствуют критическим напряжениям, т.е. тем, при которых происходит разрушение грунта.

4. Модуль упругости (Е) — отношение напряжения, при котором начинается разрушение, к разности относительной деформации конца и начала разгрузки.

5. Модуль общей деформации (Ео) — отношение разности конечного и начального напряжений к разности конечной и начальной относительной продольной деформации.

6. Угол внутреннего трения — параметр линейной зависимости сопротивления сдвигу от вертикальной нагрузки. Для песчаных грунтов равен углу предельного откоса.

7. Сцепление — характеристика структурных связей грунта.

В.В. Дмитриев, Л.А. Ярг. Методы и качество лабораторного изучения грунтов: учебное пособие. — М.: КДУ, 2008. — 542 с.

Е.М. Пашкин, А.А. Каган, Н.Ф. Кривоногова. Терминологический словарь-справочник по инженерной геологии. — М.: КДУ, 2011. — 952 с.

Определение физических свойств грунта

Краткое содержание статьи

Визуально-тактильный метод исследования физических свойств грунта

Степень цементации породы, выветрелость обломков, крепость породы могут быть оценены по сопротивлению ударам молотка, разламыванию руками, характеру излома. Запах породы помогает выявить ее сульфатность, наличие разлагающихся органических включений. Так, глины текучей консистенции часто отличаются от илов по затхлому запаху последних. В полевых условиях могут быть получены и такие приближенные оценки свойств пород, как размокаемость, растворяемость, липкость и другие.

Супесь — почти, но еще не песок. Суглинок — почти, но еще не глина.

Визуально-тактильно определяемые признаки состояния глинистых грунтов по консистенции

Кон­си­стен­цияПри­знак
Су­песь твер­даяОб­ра­зец грун­та при уда­ре раз­би­ва­ет­ся на кус­ки, при сжа­тии в ла­до­ни рас­сы­па­ет­ся, при рас­ти­ра­нии пы­лит. Вы­ре­зан­ный ку­сок ло­ма­ет­ся без за­мет­но­го из­ги­ба.
Су­песь пла­стич­наяОб­ра­зец грун­та лег­ко раз­ми­на­ет­ся ру­кой, хо­ро­шо фор­ми­ру­ет­ся и со­хра­ня­ет при­род­ную фор­му, при сжа­тии в ла­до­ни ощу­ща­ет­ся влаж­ность. Ино­гда об­ла­да­ет лип­ко­стью.
Су­песь те­ку­чаяОб­ра­зец грун­та лег­ко де­фор­ми­ру­ет­ся от не­зна­чи­тель­но­го на­жи­ма и рас­те­ка­ет­ся.
Су­глин­ки и гли­ны твер­дыеОб­ра­зец грун­та при уда­ре раз­би­ва­ет­ся на кус­ки, ино­гда при сжа­тии в ла­до­ни рас­сы­па­ет­ся, при рас­ти­ра­нии пы­лит, но­готь боль­шо­го паль­ца вдав­ли­ва­ет­ся в об­ра­зец грун­та с тру­дом.
Су­глин­ки и гли­ны по­лутвер­дыеВы­ре­зан­ный бру­сок грун­та без за­мет­но­го из­ги­ба ло­ма­ет­ся с об­ра­зо­ва­ни­ем ше­ро­хо­ва­той по­верх­но­сти из­ло­ма, при раз­ми­на­нии кро­шит­ся. Но­готь боль­шо­го паль­ца вдав­ли­ва­ет­ся в об­ра­зец грун­та без осо­бых уси­лий.
Су­глин­ки и гли­ны ту­го­пла­стич­ныеВы­ре­зан­ный бру­сок грун­та за­мет­но из­ги­ба­ет­ся еще до из­ло­ма. Ку­сок грун­та с тру­дом раз­ми­на­ет­ся ру­ка­ми; па­лец лег­ко остав­ля­ет не­глу­бо­кий от­пе­ча­ток, но вдав­ли­ва­ет­ся лишь при силь­ном на­жи­ме.
Су­глин­ки и гли­ны мяг­ко­пла­стич­ныеОб­ра­зец грун­та на ощупь влаж­ный или очень влаж­ный. Ку­сок грун­та лег­ко раз­ми­на­ет­ся, но при фор­ми­ро­ва­нии со­хра­ня­ет при­дан­ную ему фор­му. Ино­гда при­дан­ная фор­ма со­хра­ня­ет­ся на про­дол­жи­тель­ное вре­мя. Па­лец вдав­ли­ва­ет­ся в об­ра­зец грун­та при уме­рен­ном на­жи­ме на не­сколь­ко сан­ти­мет­ров.
Су­глин­ки и гли­ны те­ку­че­пла­стич­ныеОб­ра­зец грун­та на ощупь влаж­ный. Ку­сок грун­та раз­ми­на­ет­ся при лег­ком на­жи­ме паль­цем, но не со­хра­ня­ет фор­му, лип­кий и без про­су­ши­ва­ния не мо­жет быть рас­ка­тан в жгут тол­щи­ной 3 мм.
Су­глин­ки и гли­ны те­ку­чиеОб­ра­зец грун­та на ощупь очень влаж­ный. При фор­ми­ро­ва­нии не со­хра­ня­ет при­дан­ную фор­му, а по­ме­щен­ный на на­клон­ную плос­кость те­чет тол­стым сло­ем (язы­ком).
Читать еще:  Чем грунтовка по дереву отличается от пропитки по дереву

Визуально-тактильно определяемые признаки степени влажности песчаных грунтов

Сте­пень влаж­но­сти грун­таПри­знак
Ма­лой сте­пе­ни во­до­на­сы­ще­ния (ма­ло­влаж­ный) Sr 0.8Встря­хи­ва­е­мый на ла­до­ни об­ра­зец рас­по­ла­га­ет­ся, об­ра­зуя ле­пеш­ку, или рас­те­ка­ет­ся

Определение плотности грунта методом режущего кольца

Плотность грунта ρ — отношение массы (веса) грунта к его объему, г/см³ (т/м³).

Полевой метод режущего кольца применяется для песчаных и глинистых немерзлых грунтов, легко поддающихся вырезке, а также для грунтов, форма которых без кольца не сохраняется.

Применяют кольца из некорродирующего материала, внутренним диаметром не менее 50–70 мм, высотой не более диаметра и не менее половины диаметра, со стенками толщиной не менее 1,5 мм. Для однородных глинистых грунтов допускается применять кольца внутренним диаметром 40 мм. Одна сторона кольца должно иметь заостренный режущий край, с углом заточки не более 30°.

Для определения плотности грунта, пустое кольцо с пластинами-крышками взвешивается, измеряются его размеры (внутренний диаметр и высота) и вычисляется его внутренний объем с точностью до 0,1 см³. Затем в него набирается грунт и кольцо с грунтом опять взвешивается (рис. 9). Вес грунта разделенный на внутренний объем кольца покажет объемный вес грунта (плотность).

рис. 10. Определение плотности грунта методом режущего кольца

1. Кольцо, смазанное изнутри тонким слоем вазелина, заостренной поверхностью установить на предварительно выравненную поверхность грунта и вдавить его на 1–2 мм в грунт. Перекос и забивание кольца не допускаются.

2. Если нужно, то узким шпателем или ножом прорыть вокруг кольца канавку формируя грунтовый столбик. Аккуратно и постепенно насадить кольцо на столбик. Снова прорывать канавку и снова вдавить кольцо, пока оно полностью не заполнится исследуемым грунтом и грунт окажется выше кольца на 1-2 мм.

3. Если грунт плотный подрыть его под кольцом на конус и вынуть кольцо с грунтом. Если грунт рыхлый срезать кольцо ниже его на 10–15 мм плоской лопаткой или пластиной. Одновременно отобрать пробу грунта для анализа влажности.

3. Срезать грунт сверху кольца выравнивая его по верхней кромке и накрыть стеклянной металлической или пластмассовой предварительно взвешенной пластиной. Перевернуть кольцо и сровнять грунт с кромкой кольца. Иными словами, нужно сделать так, чтобы в кольце сохранился грунт естественного сложения, заполняющий весь объем кольца.

4. Протереть кольцо и взвесить его с крышкой-пластинкой и грунтом на весах с точностью до 0,01 г. Требуется проводить не менее двух параллельных испытаний. Результат находится, как среднеарифметическое.

5. Объемный вес грунта естественной влажности ρ вычислить по формуле:

где m — вес образца грунта с кольцом и пластинками r; m1 — вес кольца, г; m2 — вес стекол или пластинок, г; V — объем грунта, находящегося в полости кольца (внутренний объем кольца), см³.

Определение влажности грунта методом высушивания до постоянной массы

Влажность грунта W — количество свободной и поверхностно связанной воды, содержащейся в порах грунта в естественных условиях.

Для определения влажности грунт нужно взвесить, потом высушить до постоянной массы и опять взвесить. Разность масс покажет сколько в грунте было воды. Метод применяется для всех грунтов.

1. Для исследования естественной влажности W отбирают 15–50 г, грунта и помещают в пронумерованный алюминиевый или стеклянный стаканчик (бюкс) с плотной крышкой. Делается одновременно два анализа, то есть исследуются две пробы.

2. Взвешивают пробу в закрытом стаканчике с известным весом.

3. Открытый стаканчик помещают вместе с крышкой в сушильный шкаф нагретый до 105 ± 2°С (для загипсованных грунтов 80 ± 2°С). Песчаные грунты сушат 3 часа, глинистые — 5 часов, а загипсованные — 8 часов.

4. Стаканчик вынимают из сушильного шкафа, закрывают крышкой и охлаждают в эксикаторе с хлористым кальцием, поглощающем водяные пары, до температуры помещения. Грунт взвешивают вместе со стаканчиком и крышкой.

5. Открытую бюксу вместе с крышкой опять ставят в сушильный шкаф. Песчаные грунты сушат 1 час, остальные — 2 часа.

6. Стаканчик с грунтом вынимают, закрывают крышкой, охлаждают, взвешивают и, если необходимо, опять сушат один или два часа в зависимости от типа грунта. Операцию повторяют до тех пор, пока при двух последовательных взвешиваниях разница масс будет не более 0,02 г. Если при повторном взвешивании наблюдается увеличение массы, то к расчету принимают наименьший результат.

7. Влажность грунта W , %, вычисляют по формуле:

где m — масса пустого стаканчика с крышкой, г; m1 — масса влажного грунта со стаканчиком и крышкой, г; mo — масса высушенного грунта со стаканчиком и крышкой, г.

Результат исследования двух проб находится, как среднеарифметическое. Допускается выражать влажность грунта в долях единицы. При расхождении результатов двух параллельных анализов более чем на 2%, исследование нужно повторить изменив количество проб до трех и более.

Для песчаных грунтов этот метод исследования применяется как основной, для глинистых, как заключительная часть исследования на пластичность и текучесть.

Определение характерных влажностей и консистенции глинистого грунта

Изменение влажности глинистого грунта изменяет его состояние (консистенцию). В зависимости от количества воды находящейся в глинистом грунте он может находиться в твердом, пластичном или текучем состояниях. Пограничное состояние содержания влаги, при котором грунт переходит из твердого состояния в пластичное называется границей раскатывания, а из пластичного состояния в текучее — границей текучести.

Разность между численными значениями текучести и раскатывания называется числом пластичности I p, которое определяет классификационное наименование грунта.

рис. 10. Исследование грунта на пластичность

Определение границы раскатывания

Граница раскатывания грунта характеризуется влажностью Wp (в процентах), при которой тесто, изготовленное из грунта и воды и раскатываемое в жгут диаметром 3 мм, начинает распадаться на отдельные кусочки длиной 3–10 мм.

1. Наиболее достоверные результаты получают при работе с образцами глинистого грунта, доставленного в лабораторию с сохранением естественной влажности (в закрытой банке), так как высушивание может способствовать образованию агрегатов, искажающих оценку гидрофильности.

Илистые грунты содержащие избыточное количество влаги, подсушить обжатием грунтовой массы, помещенной в хлопчатобумажную ткань, между листами фильтровальной бумаги под давлением (пресс, груз).

Для проведения анализа исследуемый грунт размять (нарезать) и растереть в фарфоровой чашке обрезиненном пестиком не допуская дробления частиц. Пинцетом выбрать из протертого грунта растительные остатки крупнее 1 мм. Выделить из грунта минеральные частицы крупнее 1 мм протиранием сквозь сито.

2. Методом квартования отобрать пробу массой около 300 г. Выдержать пробу в закрытом стеклянном сосуде не менее 2 часов. Для грунтов, содержащих органические вещества, лабораторное исследование делать сразу, без двухчасовой выдержки.

3. В грунт добавить дистиллированной воды и размять его до состояния пластилина. Одновременно провести два анализа используя две пробы по 40–50 г.

4. На стекле, пластмассе или листе бумаги раскатать ладонью шарик грунта в жгут диаметром 3 мм. Длина жгута не должна превышать ширины ладони. При толщине жгута 3 мм он должен развалиться на кусочки от 3 до 10 мм. Если этого не произошло, смять жгут в шарик и раскатать опять. Повторять пока не получится. Смятие и раскатывание удаляет из него воду. Грунт добавлять в пробу нельзя. Если жгут развалился при большем диаметре — добавить в пробу воды. Цель раскатывания пробы в жгут — оставить в грунте, то количество воды, которое будет соответствовать переходу из пластического состояния в твердое. Для контролирования толщины жгута положите рядом гвоздь семидесятку (без шляпки) или обрезок проволоки диаметром 3 мм. Жгут должен быть примерно таким же.

Читать еще:  Универсальные грунтовки для пластика

Если из приготовленного грунтового теста невозможно раскатать жгут диаметром 3 мм (грунт рассыпается), то считают, что данный грунт не имеет границы раскатывания.

5. Кусочки распадающегося грунта собрать в бюксы и когда масса грунта в них составит 10–15 грамм провести исследование на влажность, описанное выше. То есть грунт нужно взвесить, довести до абсолютно сухого состояния и опять взвесить.

6. Вычислить влажность грунта на границе пластичности Wp.

Определение границы текучести

Граница текучести грунта характеризуется влажностью Wz (в процентах), при которой лабораторный конус погружается в приготовленную грунтовую массу на 10 мм за 5 секунд.

1. Грунт подготовить также, как и для определения влажности границы раскатывания (см. выше пункты 1–2).

2. Растертую грунтовую массу разбавить дистиллированной водой до состояния пасты. Плотно уложить ее шпателем в цилиндрическую чашу небольшими порциями так, чтобы не было воздушных полостей. Для их удаления, чашу постукивать ладонью или об резиновый коврик. Поверхность пасты загладить шпателем вровень с краями чаши.

3. Смазанный тонким слоем вазелина балансировочный конус осторожно опустить на грунтовую пасту, позволяя ему погрузиться в нее под действием собственного веса.

4. Через пять секунд конус должен погрузиться в исследуемый грунт на 10 мм (риска на конусе). Это говорит о том, что влажность грунта соответствует границе текучести.

5. Если конус не погрузился в пасту на требуемую глубину в образец долить дистиллированную воду и тщательно перемешать. Если конус погрузился ниже риски — грунт подсушить перемешиванием и небольшим ожиданием.

6. По достижении грунтом влажности соответствующей границе текучести (погружение конуса на 10 мм за 5 секунд), отобрать из него пробу 15–20 мм и провести анализ на влажность, описанный выше. То есть грунт взвесить, высушить до абсолютно сухого состояния и опять взвесить. Произвести два параллельных анализа, результат вычислить, как среднеарифметическое.

7. Вычислить влажность грунта на границе текучести Wz.

Число пластичности I p измеряется в долях единцы и рассчитывается по формуле:

где Wz — влажность на границе текучести; Wp — влажность на границе пластичности, в долях единицы.

По числу пластичности и содержанию в грунте песчаных частиц определяется наименование грунта (таблица 3).

Методы закрепления грунтов

Закрепление грунтов — это искусственное изменение строительных свойств грунтов различными физико-химическими способами. Такое преобразование обеспечивает увеличение их прочности, устойчивости, уменьшение сжимаемости и водонепроницаемости. Существует два основных способа закрепления грунтов: поверхностное и глубинное.

Поверхностное закрепление выполняют на глубину до 1 м. При этом способе грунт предварительно разрыхляется, перемешивается с закрепляющими материалами (вяжущие, цемент, известь и др.) и затем уплотняется. Глубинное закрепление предусматривает обработку грунтов без нарушения их естественного сложения путем инъекции закрепляющих материалов, термообработки и замораживания, с использованием предварительно пробуренных скважин, шпуров или забиваемых инъекторов. Инъекцию производят с использованием вяжущих, силикатных материалов и смол.

Методы глубинного укрепления грунтов

Для повышения несущей способности грунтовых оснований применяют следующие способы искусственного закрепления грунтов:

• Химический (цементация, битумизация и смолизация)
• Термический
• Искусственное замораживание
• Электрический
• Электрохимический
• Механический

Химическое закрепление грунтов

Химическое закрепление грунтов инъекцией в строительстве в настоящее время осуществляется способами силикатизации, смолизации и цементации. Наиболее распространенная и популярная из технологий по закреплению грунтов — это цементация. Цементация — это процесс нагнетания в грунт жидкого цементного раствора или цементного молока по ранее забитым полым сваям. Цементация применяется для закрепления крупно- и среднезернистых песков, трещиноватых скальных пород путем нагнетания в грунт цементного раствора через инъекторы. В зависимости от размера трещины и пористости песка применяют суспензию с отношением цемента к воде от 1:1 до 1:10, а также цементные растворы с добавками глины, песка и других инертных материалов.

Радиус закрепления грунтов составляет в скальных грунтах — 1,2-1,5 м, в крупных песках — 0,5-0,75 м, в песках средней крупности — 0,3-0,5 м. Цементацию производят нисходящими зонами; нагнетание прекращают при достижении заданного поглощения или когда снижение расхода раствора достигнет 0,5 л/мин в течение 20 мин при заданном давлении.

При горячей битумизации в трещины породы или в гравийно-гравелистый грунт нагнетают через скважины горячий битум, который, застывая, придает грунтам водонепроницаемость. При холодной битумизации, в отличие от горячей, нагнетают 35—45-процентную тонкодисперсную битумную эмульсию. Способ используется для очень тонких трещин в скальных грунтах, а также для уплотнения песчаных грунтов.

Смолизацию применяют для закрепления мелких песков и выполняют путем нагнетания через инъекторы в грунт смеси растворов карбамидной смолы и соляной кислоты.

Силикацией закрепляют песчаные и лессовые грунты, нагнетая в них химические растворы. Через систему перфорированных трубок-инъекторов в грунт последовательно нагнетаются растворы силиката натрия и хлористого кальция. Получающийся в результате реакции гель кремниевой кислоты придает грунту значительную прочность и водонепроницаемость.

Термическое закрепление грунтов

Термическое закрепление является результатом сжигания топлива (газообразного, жидкого, сжиженных газов) непосредственно в скважинах, пробуренных на всю глубину закрепляемого грунта. Закрепление грунта в скважине происходит под действием пламени, а в теле массива — от раскаленных газов, проникающих сквозь поры грунта. В результате вокруг скважины образуется столб обожженного грунта, диаметр которого зависит от продолжительности обжига и количества топлива. Этим способом можно закрепить грунты и устранить их просадочность на глубину до 15 м, доведя прочность в среднем до 1 МПа.

Искусственное замораживание грунтов является универсальным и надежным методом временного закрепления слабых водонасыщенных грунтов. Сущность данного метода заключается в том, что через систему замораживающих скважин, расположенных по периметру и в теле будущей выработки, пропускается хладоноситель с низкой температурой, который, отнимая от окружающего грунта тепло, превращает его в ледогрунтовый массив, обладающий полной водонепроницаемостью и высокой прочностью.

В зависимости от вида хладоносителя различаются два способа замораживания: рассольный и сжиженным газом. В первом случае рассол-хладоноситель представляет собой высококонцентрированный раствор хлористого кальция или натрия, предварительно охлажденный в испарителе холодильной машины до температуры минус 25° С. В качестве хладагента в холодильных машинах используются аммиак, фреон или жидкий азот. Во втором случае в качестве хладоносителя сжиженных газов используется главным образом жидкий азот, имеющий температуру испарения минус 196° С.

Электрический способ закрепления грунтов

Электрическим способом закрепляют влажные глинистые грунты. Способ заключается в использовании эффекта электроосмоса, для чего через грунт пропускают постоянный электрический ток с напряженностью поля 0,5-1 В/см и плотностью 1-5 А/кв.м. При этом глина осушается, уплотняется и теряет способностью к пучению.

Электрохимический способ отличается от предыдущего тем, что одновременно с электрическим током через трубу, являющуюся катодом, в грунт вводят растворы химических добавок (хлористый кальций и др.). Благодаря этому интенсивность процесса закрепления грунта возрастает.

Механический способ укрепления грунтов

Механический способ укрепления грунтов имеет следующие разновидности: устройство грунтовых подушек и грунтовых свай, вытрамбовывание котлованов и др.

Устройство грунтовых подушек заключается в замене слабого грунта основания другим, более прочным, для чего слабый грунт удаляют, а на его место насыпают прочный грунт и послойно утрамбовывают. При устройстве грунтовых свай в слабый грунт забивают сваю-лидер. В полученную после извлечения этой сваи скважину засыпают грунт и послойно уплотняют. Вытрамбовывание котлованов осуществляется с помощью тяжелых трамбовок, подвешенных на стреле башенного крана. Этот способ менее сложен, чем способ грунтовых подушек, поскольку не требует замены грунта основания. Также уплотнение котлованов значительных размеров может осуществляться гладкими или кулачковыми катками, трамбующими машинами, виброкатками и виброплитами.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector