Угол естественного откоса грунта при движении - Ремонт и дизайн от ZerkalaSPB.ru
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угол естественного откоса грунта при движении

Угол естественного откоса грунта при движении

Жанр: Технологии

Просмотров: 443

1.5 угол естественного откоса

Углом естественного откоса называют угол α, образуемый линией естественного откоса (отвала) сыпучего материала с горизонтальной плоскостью [11]. Величина угла естественного откоса зависит от сил трения,

Рис. 3 Схема устройства для измерения угла естественного откоса сыпучих материалов

возникающих при перемещении частиц сыпучего материала относительно друг друга, и сил сцепления между ними. Угол α может быть измерен с помощью простейшего устройства, изображенного на рис.

3. При определениях угла α исследуемый сыпучий материал выпускают из воронки 1 на горизонтальную площадку 2, в результате чего там образуется конус 3 из материала. Затем с помощью угломера измеряют угол наклона α образующей этого конуса к горизонту – это и будет угол естественного откоса исследованного материала. Угол α определяет подвижность сыпучего материала, его необходимо учитывать при конструировании лотков, течек, выпускных конических частей бункеров. Во всех случаях

следует принимать угол наклона поверхностей к горизонту, по которым стекает данный сыпучий материал, превосходящим по величине его угол естественного откоса.

Величина угла α зависит от состояния поверхности опорной площадки. Чем меньше шероховатость этой поверхности, тем меньше угол естественного откоса. Снижается значение угла α и в том случае, когда горизонтальная опорная поверхность вибрирует. Поэтому при проектировании бункеров и течек для малоподвижных с большим значением угла естественного откоса сыпучих материалов внутренние поверхности этих устройств шлифуют, а во время работы их с помощью вибраторов приводят в колебательное движение с весьма малыми амплитудами.

Поведение сыпучего материала в технологических процессах определяется его способностью оказывать сопротивление изменению объема, формы, нарушению целостности. Характерной особенностью сыпучих материалов является подвижность частиц относительно друг друга (сыпучесть) и способность перемещаться под действием внешней силы. Сыпучесть зависит от гранулометричеcкого состава материала, его влажности, степени уплотнения и проявляется по-разному (рис. 4).

Так, при насыпании сыпучего материала на горизонтальную поверхность из воронки (рис. 4, а) образуется конус с углом естественного откоса при основании. При удалении подпорной боковой стенки свод материала обрушивается, а свободная поверхность материала располагается под некоторым углом к горизонтальной плоскости (рис. 4, б).

В случае открытия отверстия в плоском днище бункера происходит частичное осыпание материала с образование свода (при малом диаметре отверстия) или кратера (рис. 4, в, г). При прекращении вращения полого барабана с засыпанным материалом свободная поверхность также образует некоторый угол с горизонтальной плоскостью (рис. 4, д).

Сыпучесть характеризуется косвенными показателями, среди которых наибольшее распространение получил угол естественного откоса αд. Широкое использование этого показателя при определении наклона стенок бункера, желобов объясняется простотой и надежностью его измерения.

Углом естественного откоса называется угол наклона образующей конуса сыпучего материала, отсыпанного без толчков и вибраций, к горизонтальной плоскости [3]. Эта характеристика связана одновременно с аутогезией, внутренним трением и плотностью частиц порошка и его гранулометрическим составом.

Наряду с углом естественного откоса различают угол обрушения αп, который характеризует положение поверхности откоса, образованной в результате сползания части сыпучего материала. Угол обрушения всегда больше угла естественного откоса. Угол обрушения служит важным параметром при проектировании транспортных средств и бункеров для хранения сыпучих материалов и наряду с этим применяется в научных исследованиях. В литературе имеются и другие названия этих параметров: угол естественного откоса – динамический угол откоса, угол трения движения, угол насыпания; угол обрушения – статический угол откоса, угол трения покоя.

Экспериментально углы естественного откоса и обрушения можно определить следующими методами:

1 Насыпкой из воронки на горизонтальную плоскость.

2 Высыпанием из емкости при открытии окна.

3 Образованием кратера при истечении через щель или отверстие.

4 Переворачиванием емкости, частично засыпанной материалом.

5 Вращением барабана полого или содержащего лопасть.

Методы 1, 2, 3 позволяют определить только один угловой параметр, методы 4, 5 – два.

Насыпную плотность сыпучего материала определяют путем взвешивания сыпучего материала в измерительном стакане.

Любая деформация сыпучего материала сопровождается сдвигом, т.е. скольжением частиц одна относительно другой. В отличие от жидкостей сыпучие материалы могут выдерживать определенные усилия сдвига. Связь между предельным сопротивлением τα и нормальным напряжением σα в плоскости

скольжения слоев выражается законом Кулона [7]

τα  c  f σα , (21)

где c – удельное сцепление частиц в сыпучем материале в Па; f – коэффициент внутреннего трения.

При σα = 0, с = τ0 , получим начальное сопротивление трения. Угол наклона линий, выражающих зависимость τα = f(σα), называется углом внутреннего трения. Зависимость между углом внутреннего трения и коэффициентом внутреннего трения следующая: f = tg ϕ.

При расчете сил трения сыпучего материала о стенки бункера и рабочие органы машин используется коэффициент внешнего трения сыпучего материала. Значения коэффициентов внутреннего и внешнего трения и соответствующих им углов, а также предельного сопротивления под нагрузкой и начального сопротивления сдвига определяют на специальных сдвиговых приборах. Однако динамическое поведение сыпучего материала нельзя оценить какой-либо одной характеристикой.

Для этой цели используют комплексные показатели, состоящие из совокупности физикомеханических характеристик. Согласно [1] для классификации сыпучих материалов применительно к процессам, связанным с их перемещением и обработкой, предлагается комплексный показатель связности, характеризующий способность сыпучего материала образовывать устойчивые вертикальные откосы

g ρн 1 − sin ϕ

В зависимости от величины hp все сыпучие материалы подразделяются на 3 класса: несвязные, связно текучие и связные. Каждый класс делится на две группы. Выбор типа оборудования должен производиться с учетом физико-механических свойств.

Их учет при расчете и выборе оборудования обеспечивает гарантированную переработку мелкодисперсных связных материалов и достаточный запас надежности при переработке несвязных материалов.

Выбор конструкции оборудования, машины или аппарата для хранения, транспортирования или переработки сыпучего материала зависит от его гранулометрического состава и физико-механических характеристик.

Содержание

Читать: Аннотация
Читать: Введение
Читать: 1 физико-механические свойства сыпучих материалов
Читать: 1.1 гранулометрический состав
Читать: 1.2 насыпная плотность
Читать: 1.3 влажность
Читать: 1.4 текучесть
Читать: 1.5 угол естественного откоса
Читать: 1.6 адгезия
Читать: 1.7 слеживаемость
Читать: 2 методы оценки качества смесей
Читать: 2.1 критерии качества смеси
Читать: 2.2 выбор необходимого числа проб для оценки качества смеси
Читать: 2.3 минимально допустимый вес пробы
Читать: 2.4 поверочный контроль качества готовой смеси
Читать: 2.5 техника отбора проб из смеси
Читать: 2.6 методы анализа проб
Читать: 3 свойства смесей сыпучих материалов
Читать: 3.1 случайность в свойствах исходных и конечных продуктов процессов смешивания
Читать: 3.2 определение свойств смеси сыпучих материалов
Читать: 3.3 экспериментальное определение сил сопротивления движению частиц в плотных слоях
Читать: 4 лабораторный практикум
Читать: Лабораторная работа № 1
Читать: Лабораторная работа № 2
Читать: Лабораторная работа № 3
Читать: Лабораторная работа № 4
Читать: Лабораторная работа № 5
Читать: Лабораторная работа № 6
Читать: Список литературы
Читать: Приложение

Оползни и борьба с ними

Оползни представляют собой смещение грунта под действием силы тяжести; они наблюдаются как в откосах насыпей, так и выемок. Хотя оползания откосов нередкое явление в свежеотсыпанных, недостаточно уплотненных насыпях в период их сооружения или во вновь разработанных выемках, откосы которых плохо зачищены, однако работникам пути приходится чаще всего иметь дело с оползнями, причиной которых является отсутствие правильного отвода воды.
Некоторые оползни находятся в постоянном, хотя и медленном, движении, другие происходят внезапно и смещаются с большой скоростью, подобно лавинам, третьи приходят в движение периодически и с большими промежутками во времени между подвижками. В некоторых случаях оползни сопровождаются выпиранием нижележащего грунта, в других — оползший грунт расползается по поверхности земли. Иногда происходит смещение грунта, внешне казавшегося сухим. Однако причиной большинства оползней, независимо от характера их движения, является избыточное увлажнение грунтов поверхностными или подземными водами или теми и другими вместе.
Вода, проникая в грунт, нарушает сцепление между его частицами и вместе с тем, насыщая грунт, увеличивает его вес, чем создается дополнительная нагрузка на нижележащие слои. Если вода смачивает наклонную поверхность грунта или поверхности раздела между различными грунтами, она действует как смазка, что приводит к потере устойчивости вышележащими слоями грунта. При скоплении воды на поверхности земли облегчается возможность ее просачивания даже в слабо водопроницаемые грунты и тем самым увеличивается объем переувлажненного грунта и площадь смачиваемой поверхности скольжения. Из сказанного понятно многообразие вредного действия воды на устойчивость грунтов как в естественном залегании, так и в земляных сооружениях; при этом в каждом отдельном случае может проявиться один из перечисленных факторов или же все они могут действовать в комплексе.

Меры борьба с оползнями.

Существует много способов борьбы с оползнями, однако все эти способы можно разбить на шесть категорий: 1) перехват поверхностных и подземных вод выше оползня; 2) принятие мер против инфильтрации поверхностных вод в тело оползня; 3) механическое закрепление оползневых масс; 4) цементация оползневых грунтов под давлением; 5) осушение насыщенного водой грунта; 6) уположение откосов и уменьшение перепада давления. Каждый оползень имеет свои индивидуальные особенности, поэтому метод или комплекс методов для его закрепления должен быть выбран с учетом этих особенностей.
Для перехвата и отвода поверхностных вод широко применяются открытые канавы, иногда совместно с лотками и металлическими коллекторами для уменьшения опасности размыва грунта.

Читать еще:  Хорошая грунтовка по металлу для забора


Рис. Рекомендованные схемы исправления пути на пучинах

Для их сооружения используют гусеничные бульдозеры, тракторные лопаты и опрокидывающиеся погрузчики, при помощи которых можно одновременно производить террасирование и планировку склонов.
Для предупреждения инфильтрации воды в тело оползня применяют гидроизоляцию поверхности оползня нефтеванием или покрытием из другого водонепроницаемого материала. Для гидроизоляции основной площадки земляного полотна применяют также балласт, смешанный с битумом, или изоляционный слой из битумной эмульсии.
Укрепление оползающего грунта свайными или бревенчатыми подпорными стенами и ряжами в некоторых случаях оказалось успешным, однако это является лишь временной мерой, предназначенной для укрепления оползня на период до начала действия дренажа. Одновременно с применением цементации грунта под давлением для стабилизации пути с балластными корытами ее начали успешно применять также для укрепления оползающих откосов насыпей и выемок (см. рис.).
Одним из методов укрепления откосов насыпей является отсыпка у подо ивы насыпи каменных контрбанкетов, однако этот метод дает эффект только в том случае, если вес контрбанкета достаточен для создания устойчивого равновесия.
Уположение откосов для предупреждения возможного оползания успешно применяется в глубоких выемках в тех случаях, когда увеличенный вес насыщенного водой грунта требует применения более пологого откоса, чем угол естественного откоса данного грунта при его естественной влажности. С применением современных машин эти работы выполняются сравнительно легко, при этом удалить даже значительный объем грунта можно дешево и с небольшой затратой рабочей силы.

Каменные дренажи.

Каменные, или французские, дренажи представляют собой траншею, заполненную рваным камнем. Эти дренажи применяют для осушения насыпей, отсыпанных из мокрых грунтов, так же как для укрепления оползающих откосов выемок и полувыемок. Обычно эти дренажи устраивают шириной от 1,22 до 1,52 м и глубиной 0,76 м с уширением на выпуске, хотя некоторые дороги применяют дренажи шириной 1,83 и глубиной 1,22 м. При их заполнении более крупные камни кладут вниз, а более мелкие — сверху. Однако такие дренажи работают не более двух лет, так как быстро кольматируются мелкими частицами грунта.

Сигнальные ограды.

Некоторые типы сигнальных оград, соединенных электрическими проводами с поездными сигналами, оказались достаточно эффективными для предупреждения поездной бригады о происшедших обвалах камней, льда и грунта, опасных для движения поездов. Новейшие типы таких оград устанавливают вблизи от пути, чем облегчается их осмотр и содержание. Такие ограды состоят из обыкновенной плетеной решетки, применяемой для огораживания сельскохозяйственных угодий, которая закрепляется между столбами с тем, чтобы создать упругий уловитель для падающих обломков скалы, льда или комков грунта.
Каждая панель ограды подвешена на несущем проводе и при получении сколько-нибудь заметного толчка приводит в действие соответствующий данной панели выключатель тока, который разъединяет цепь. Связанное с выключателем реле в цепи сигнализации, срабатывая автоматически, устанавливает сигналы в закрытое положение.
Другой тип сигнальной ограды, также устанавливаемой около пути, представляет собой серию свободно подвешенных на общей оси плетеных из проволоки панелей, которые отклоняются в сторону пути при ударе о них падающего предмета. При этом происходит размыкание тока с установкой поездных сигналов в запрещающее положение.
Защита от оползней и обвалов. В гористой местности, где линия проходит вдоль высоких скалистых склонов, часто встречается необходимость в ограждении пути от завала оползающим грунтом или от падения скальных обломков, отрывающихся в результате морозного выветривания. Для защиты пути в таких случаях применяют деревянные и бетонные галереи, достаточно прочные, чтобы выдержать вес оползшего грунта или удары тяжелых камней.
В некоторых случаях такие галереи служат для защиты пути как от грязевых потоков, так и от снежных лавин.
Применяют два основных типа бетонных галерей. Первый тип состоит из прочной удерживающей стены, устанавливаемой с нагорной стороны пути и способной выдержать большое давление оползшего грунта. Перекрытие галерей устраивают из железобетонных плит, опирающихся на стену и бетонные колонны с низовой стороны пути. Второй тип обычно применяется в скальных выемках, где места для устройства мощной удерживающей стены недостаточно. Плиты кровли в этом случае заделываются в скальные откосы или опираются на тонкую железобетонную стену, устраиваемую между путем и скальным откосом.

—>Институт геоэкологии им. Е.М. Сергеева РАН —>

Грунтовая толща особенно приповерхностные её слои на склоне, испытывает деформации и без активного развития оползневого процесса. Это связано с промерзанием и оттаиванием верхних горизонтов массива в зимне-весенний период, обводнением и усушкой их в теплое летнее время, с силовым воздействием на грунтовый скелет фильтрующихся грунтовых вод, с изменением напряженного состояния в массиве вследствие увеличения – уменьшения веса грунтов при их увлажнении – высыхании, проявлении взвешивающего эффекта грунтовых вод, влияния локальных подвижек, проявлений отдельных трещин и техногенных изменений рельефа.

Все перечисленные факторы могут вызывать деформирование приповерхностного покрова в сторону падения склона. Это деформирование может происходить в виде медленной ползучести грунтов (известно явление «вековой ползучести») с возможными активизациями при аномальных воздействиях факторов.

Возникновение оползня обусловлено нарушением равновесия массива и деформированием грунтового массива на качественно ином уровне. Под оползневым процессом понимается нарушение равновесия грунтового массива, его деформирование под действием неуравновешенных сил, отделение части массива трещиной растяжения (потенциальной или действительной «стенкой срыва») и движение образованного оползневого тела по поверхности скольжения без потери контакта с несмещаемым ложем.

По характеру нарушения равновесия грунтового массива, особенностям деформирования, которые в значительной степени определяются преобладающим силовым воздействием и механизмом деформирования, оползни можно подразделить на четыре основных типа [1, 2].

Первый тип – блоковые относительно глубокие оползни сжатия (по другим классификациям – оползни выдавливания, раздавливания, оседания, выпирания). Нарушение равновесия массива и деформирование при формировании оползня происходят по схеме сжатия. Под сжимающим вертикальным давлением от веса покрывающих пластов деформируется (раздавливается) горизонт, структурная прочность с грунтов которого меньше указанного бытового давления. Вследствие деформирования грунтов раздавливаемого горизонта в сторону склона происходят проседание и прогиб вышележащего массива с формированием в зоне изгиба сначала концентрации растягивающих напряжений, а затем – трещины закола (опущенной трещины растяжения). Далее по этой трещине отделяется и оседает по крутой криволинейной поверхности скольжения оползневой блок. Поверхность скольжения к склону выполаживается и может быть близкой к горизонтальной [3].

Наибольшее распространение имеют блоковые оползни сжатия, поверхности скольжения которых формируются в глинистых грунтах (рис. 1. а,б). Оползни данного типа поражают берега рек, морей, озёр, образуются на откосах выемок, насыпей, на бортах карьеров. Согласно результатам исследований глубокие блоковые оползни получили развитие и на правом берегу Камы, на участке пересечения реки Ужгородским коридором магистральных газопроводов.

Рис. 1. Схемы оползневых деформаций по механизму сжатия. а, б – оползень сжатия в глинистых грунтах; в – оседание и расползание блоков полускальных и скальных пород; г – выпор дна долины; д – гравитационные складки: глубинная ползучесть с S-образным изгибом пластов; е – гравитационные деформации хребтов.

Оползни данного типа в полускальных и скальных грунтах менее известны. Они встречаются в горных и предгорных регионах. Для них характерно медленное развитие деформации в стадию подготовки смещения, продолжительностью до нескольких сотен лет (рис. 1 в-е).

Второй тип – оползни сдвига (по другим классификациям – оползни скольжения, срезания, соскальзывания, покровные). В допредельном состоянии происходит концентрация в соответствующих зонах грунтового массива касательных сдвиговых напряжений: подготовка сдвигов грунта на крутых участках склона при формировании угла естественного откоса; ползучесть выветрелых приповерхностных склоновых отложений (покровные оползни) с перемещением по схеме бесконечного откоса; сдвиг по предопределенной геологическим строением зоне ослабления (по контакту с кровлей более прочных пород, по плоскости напластования). Деформирование склона (откоса) происходит в виде прогрессирующего сдвига с падением сопротивления по мере деформирования, снижением прочности от пикового значения до остаточного и постепенным формированием поверхности (плоскости) скольжения.

Рис. 2. Схемы оползневых деформаций по механизму сдвига. а – сдвиг-срезание; б – сдвиг по напластованию; в – сдвиг-скольжение покровных масс; г – сдвиг (сплыв) почвенного (почвенно-растительного) слоя; д – изгиб голов крутопадающих пластов.

На крутых уступах сдвиг (скольжение) оползающей части массива происходит, как правило, по криволинейной поверхности скольжения, выходящей к подошве уступа или выше ее (рис. 2а). Таким образом, формируется профиль равнопрочного или равноустойчивого откоса со смещением (нередко обрушением) разупрочненных грунтов. Поверхность скольжения может быть приурочена к наклонным геологическим границам между слоями. При этом могут сдвигаться значительные пачки горных пород (рис. 2б). Схема сдвига по ломаным плоским поверхностям скольжения характерна для оползания делювиально-элювиальных склоновых накоплений по наклонной кровле коренных пород (рис. 2в). Частой формой оползневых проявлений является сдвиг (сплыв) почвенно-растительного покрова (рис. 2г), выявляющийся по серии относительно коротких оползневых трещин. Медленная ползучесть приповерхностного слоя в виде сдвига может наблюдаться на относительно устойчивых склонах с крутым падением пластов прочных пород (рис. 2д).

Третий тип – оползни разжижения (по другим классификациям – оползни течения, сплывы, оплывины, пластические, вязко-пластические). Нарушение равновесия склоновых массивов в виде разжижения происходит вследствие преобладающего силового воздействия подземных (грунтовых) вод. Основной механизм разжижения, рассматриваемый в механике грунтов как фильтрационное деформирование грунта, — это увеличение порового давления (давления воды в порах грунта) и, как следствие, уменьшение эффективных напряжений. В водонасыщенном грунтовом массиве поровая вода в той или иной степени может оказывать на минеральный скелет грунта гидростатическое взвешивание и фильтрационное давление разной направленности, вызываемые фильтрационными объёмными силами. Интенсивность и направленность этих сил зависят от внешних воздействий: статической и динамической нагрузок на склон, скорости фильтрационных потоков и колебания уровня подземных вод, уровенного режима в водоемах и поверхностных водотоках, интенсивности атмосферных осадков и т.д.

Читать еще:  Холодное цинкование по грунтовке

Данный механизм формирования оползней особенно характерен для дисперсных грунтов, обладающих слабым структурным скелетом и малой фильтрационной способностью. К ним относятся современные илы, водонасыщенные молодые глины и суглинки, плывуны, почвы, торфы, а также глинистые грунты различного возраста, потерявшие прочность в результате разуплотнения, выветривания и гидратации.

С действием механизма разжижения связано оплывание откосов малосвязного грунта при обводнении в связи с изменением угла откоса от  =  до  = /2 (где  — угол внутреннего трения необводненного грунта). В месте выхода (разгрузки) на поверхность склона подземных вод нередко образуется оползневой цирк с суженной горловиной (рис. 3а). Разжиженные грунтовые массы (продукт обрушения стенки срыва и бортов) в виде вязко-пластического потока перемещаются из горловины на откос с образованием конуса выноса у подножия. Возникающее в результате сильных ливней, обильного таяния снега повышение уровня подземных вод и соответственно восходящие фильтрационные силы могут снизить внутреннее трение в грунте до нуля, а разуплотнение при малых нагрузках (поверхностные слои) – привести к потере связности между минеральными частицами. Разжижение песчано-глинистого грунта в таком случае может произойти даже при небольших уклонах поверхности (1:10 и менее) (рис. 3б). Часто встречаются нарушения локальной устойчивости участка склона в местах избыточного увлажнения грунтов и деформирования в виде оплывин (рис. 3в).


Рис. 3. Схемы оползневых деформаций по механизму разжижения. а – оползневой цирк с узкой горловиной (разгрузка подземных вод); б – оползень-поток; в – оплывина.

Четвертый тип – оползни растяжения с отрывом части массива пород (другие названия: оползни-обвалы, обрушение, сложный оползень). Нарушение равновесия и преобладающее разрушение происходит под действием нормальных растягивающих напряжений с разделением массива по поверхности разрыва. Монолитные скальные породы могут воспринимать значительные растягивающие напряжения (до 30 МПа), свидетельством чему являются высокие отвесные откосы бортов многих горных долин. При превышении растягивающими напряжениями предела прочности грунта неуравновешенные блоки пород отделяются от остального массива, сползают, обрушаются (рис. 4а). Отделение массива может происходить по разрывным сейсмотектонических трещинам с последующим перемещением по поверхности сдвига (рис. 4б) или проседанием отделившегося массива с деформированием подстилающей толщи глинистых пород (рис. 4в). Наличие крутой подготовленной поверхности сдвига также способствует образованию трещин разрыва в зоне концентрации растягивающих напряжений (рис. 4г).

Из всех рассмотренных типов наибольшую опасность для магистральных газопроводов в условиях Русской платформы представляют глубокие блоковые оползни (см. рис. 1). Борьба с глубокими блоковыми оползнями представляет большую сложность, особенно когда оползневой процесс набирает обороты и приобретает катастрофический характер, вызывая опасное деформирование и разрушительные аварии ниток газопровода.

На данном участке 9 ниток магистрального газопровода находятся в старом оползневом цирке, сформированном глубокими блоковыми оползнями. Мониторинг оползневого процесса должен быть нацелен на выявление глубоких подвижек и контроль состояния глубокого оползня.

Рис. 4. Схемы оползневых деформаций по механизму растяжения с отрывом части массива пород. а – отрыв и скольжение с обрушением блоков скальных пород; б – разрыв по тектонической трещине и скольжение по формируемой поверхности в горном массиве; в – отделение массива по разрывному нарушению и проседание блока пород с деформированием глинистой толщи; г – отрыв по месту концентрации растягивающих напряжений и сдвиг по крутой поверхности напластования.

ОСНОВНЫЕ ТЕРМИНОЛОГИЧЕСКИЕ ПОНЯТИЯ ОБ АВТОМОБИЛЬНЫХ ДОРОГАХ

ЗЕМЛЯНОЕ ПОЛОТНО — дорожное сооружение, служащее основанием для размещения конструктивных слоев дорожной одежды и других элементов. Возводится из местных материалов. Земляное полотно строят в виде насыпей, выемок, а на косогорах — полунасыпей-полувыемок.

НАСЫПЬ — инженерное земляное сооружение из насыпного грунта, в пределах которого вся поверхность земляного полотна расположена выше уровня земли.

ВЫЕМКА — земляное сооружение, выполненное путем срезки естественного грунта по заданному профилю; при этом вся поверхность земляного полотна расположена ниже поверхности земли.

ПОЛУНАСЫПЬ-ПОЛУВЫЕМКА — земляное сооружение на косогоре, выполненное путем срезки уступом части естественного грунта с использованием его в полунасыпи или в отвал.

ОБОЧИНА (Ао) — боковая полоса земляного полотна с каждой его стороны между бровкой и кромкой проезжей части, предназначенная для предохранения краев дорожной одежды от разрушения, вынужденной остановки транспорта, размещения ограждений, средств сигнализации и других средств, обеспечивающих безопасность движения.

ОТКОС (0) — боковая наклонная поверхность, ограничивающая земляное сооружение или склоны естественного рельефа.

КОЭФФИЦИЕНТ ЗАЛОЖЕНИЯ ОТКОСА (1: m ) — отношение высоты откоса к его горизонтальной проекции — заложению.

БРОВКА (б) — линия пересечения плоскости откоса и поверхности земляного полотна в месте их сопряжения.

БАНКЕТ (бан.) — сооружение правильной формы (трапецеидального или треугольного сечения — pppa.ru) из грунта, отсыпаемого вдоль верхней бровки выемки для ограждения и защиты ее откосов от размыва поверхностными водами.

КОНТРБАНКЕТ — инженерное сооружение из камня или грунта, устраиваемое в виде подсыпки насыпи взамен подпорной стенки. Сооружается на крутых косогорах у подошвы насыпи или полунасыпи-полувыемки в целях их укрепления или борьбы с выпором основания.

БЕРМА — узкая горизонтальная или слегка наклонная полоса, прерывающая линию откосов земляного полотна при большой их крутизне и длине.

Автомобильная дорога — инженерное сооружение, предназначенное для движения транспортных средств на пневмоколесном ходу. Основными элементами дороги являются: земляное полотно, дорожная одежда, проезжая часть, обочины, искусственные сооружения и все виды обстановки.

ПОЛОСА ОТВОДА (ПО) — полоса земли, на которой размещается автомобильная дорога и все ее сооружения. Ширина постоянной полосы отвода зависит от категории дороги и рельефа местности.

РЕЗЕРВ (Бр) — территория, отводимая для разработки грунта неглубокими выработками правильной формы, из которых грунт используется для отсыпки насыпи.

КАНАВА БОКОВАЯ (Кювет, К) — канава, проходящая вдоль земляного полотна, для сбора и отвода поверхностных вод, стекающих с проезжей части и окружающей местности, с поперечным сечением лоткового, треугольного и трапецеидального профиля.

НАГОРНАЯ КАНАВА (НК) — канава, отрываемая с нагорной стороны дороги для перехвата стекающей по склону воды и отвода ее от дороги.

ВЫСОТА НАСЫПИ (Нн)- расстояние, измеренное по оси дороги от поверхности земли до линии бровки земляного полотна.

ГЛУБИНА ВЫЕМКИ (Нв) — расстояние, измеренное по оси дороги от линии бровки выемки до линии бровки земляного полотна.

ПОЛКА (П) — элемент выемки, устраиваемый на снегозаносимых участках шириной не менее 4,0 м для аккумуляции метелевого снега в целях снегонезаносимости проезжей части.

ОТВАЛ ГРУНТА (КАВАЛЬЕР «ОРС») — растительный грунт, непригодный грунт при разработке выемки или карьера, уложенный в отведенном месте вне строящейся дороги (разработки карьера).

ПОДОШВА НАСЫПИ (Пн) — нижняя поверхность насыпи, опирающаяся на подстилающий грунт.

ДОРОЖНАЯ ОДЕЖДА (ДО) — многослойная конструкция, воспринимающая нагрузку от транспортных средств и передающая ее на дополнительный слой (в отдельных случаях — на грунтовые основания).

ПОКРЫТИЕ ДОРОЖНОЕ — однослойная или многослойная верхняя часть дорожной одежды, устраиваемая на основании, непосредственно воспринимающая нагрузки от транспортных средств и предназначенная для обеспечения заданных эксплуатационных требований и защиты дорожного основания от воздействия атмосферных факторов.

ПРОЕЗЖАЯ ЧАСТЬ — основной элемент дороги, предназначенный для непосредственного движения транспортных средств. В зависимости от интенсивности движения транспорта проезжая часть может быть одно-, двух-, трех- и многополосной.

ПОЛОСА ДВИЖЕНИЯ — продольная полоса проезжей части, по которой происходит движение транспортных средств в один ряд.

КРАЕВАЯ ПОЛОСА (КП) — уширение дорожной одежды на дорогах категорий I -а (б), II , III , IV — a , 1-с-а с целью размещения на ней крайних разметочных линий для организации движения транспорта и предохранения кромки дорожной одежды от разрушения.

ПОЛОСА УКРЕПЛЕНИЯ (а) — полоса с каменным покрытием, ограничивающая кромку проезжей части, устраиваемая на обочине с целью повышения безопасности движения и предотвращения от разрушения кромок проезжей части.

ПОЛОСА УКРЕПЛЕНИЯ (аУ) — полоса, устраиваемая шириной 0,50 м для всех категорий дорог от бровки земляного полотна и укрепленная засевом трав.

ОСНОВАНИЕ ДОРОЖНОЕ (ОС) — нижний несущий слой дорожной одежды, воспринимающий нагрузку от транспортных средств совместно с покрытием, и предназначенный для ее распределения на дополнительный слой или непосредственно на грунт земляного полотна.

ДОПОЛНИТЕЛЬНЫЙ СЛОЙ — конструктивный слой основания, выполняющий защитные функции слоев дорожной одежды (дренирующие, морозозащитные и т. д.).

УКЛОН ПОПЕРЕЧНЫЙ — отклонение поверхности какого-либо элемента дорожной конструкции (земляного полотна, слоев дорожной одежды) от горизонтального уровня, измеряемое в перпендикулярном направлении к оси дороги.

УКЛОН ПРОДОЛЬНЫЙ — отклонение проектной линии от горизонтали в продольном направлении. Уклоны измеряются в промиллях.

ПРОМИЛЛЕ (от латинского pro millie — за тысячу) — отношение высоты откоса к его заложению, умноженное на 1000. Обозначается — ‰.

Читать еще:  Уклон откоса при глинистых грунтах

ПЕРЕХОДНО-СКОРОСТНАЯ ПОЛОСА — это полоса движения, устраиваемая преимущественно на пересечениях и примыканиях в местах разворота и у автобусных остановок для обеспечения разгона или торможения автомобилей на выезде в общий поток, движущийся по основным полосам — pppa.ru. Она состоит из полос разгона, отгона и торможения.

ОБУСТРОЙСТВО ДОРОГИ — комплекс дорожных сооружений, к которым относят:

автобусные остановки, переходно-скоростные полосы, площадки для остановки, стоянки и отдыха, устройства для освещения дорог, дорожную связь, дорожки для пешеходов, велосипедистов и т. п.

ОБСТАНОВКА ДОРОГИ — совокупность средств организации дорожного движения: дорожные знаки, ограждения, разметка и светофоры.

ИСКУССТВЕННЫЕ СООРУЖЕНИЯ — сооружения, устраиваемые на пересечении дорогами рек, оврагов, горных хребтов и других препятствий, а также, снегозащитные, противообвальные. К искусственным сооружениям относят: мосты, путепроводы, тоннели, трубы, подпорные стенки и т. д.

ТРУБА — инженерное сооружение, укладываемое в теле насыпи дороги для пропуска водного потока, дороги или скотопрогона.

ОТВЕРСТИЕ ТРУБЫ — наибольший горизонтальный размер или сумма; размеров (для многоочковой трубы) тела трубы в свету.

ТЕЛО ТРУБЫ — основная часть трубы между входным и выходным оголовками, находящаяся в грунте насыпи, имеющая замкнутую форму поперечного сечения, по которому осуществляется сток воды.

ДЛИНА ТРУБЫ — размер между наружными гранями входного и выходного оголовков.

ОГОЛОВОК ТРУБЫ — крайний элемент трубы, удерживающий откос насыпи и обеспечивающий вход водного потока в трубу, и выход из нее. У трубы имеются входной и выходной оголовки.

ОГОЛОВОК ПОРТАЛЬНЫЙ — оголовок трубы, представляющий собой вертикальную подпорную стенку, удерживающую откос насыпи.

ОГОЛОВОК РАСТРУБНЫЙ — оголовок трубы, состоящий из стенки портала и двух откосных крыльев переменной высоты, расположенных под углом и удерживающих откос насыпи.

ОГОЛОВОК КОНИЧЕСКИЙ — оголовок трубы, имеющий форму полого усеченного конуса.

ЛОТОК ТРУБЫ — нижняя часть поперечного сечения трубы или специально выполненная подготовка в трубе для обеспечения беспрепятственного стока воды.

ДИАМЕТР ТРУБЫ — наибольший размер отверстия в свету звена круглой трубы.

ЗВЕНО ТРУБЫ (СЕКЦИЯ ТРУБЫ) — основной элемент конструкции сборной трубы замкнутого поперечного сечения, являющийся частью тела трубы.

Угол естественного откоса грунта при движении

Под забоем экскаватора понимают место его работы, то есть рабочую зону. Сюда включена площадка, на которой стоит экскаватор, часть поверхности, с которой вынимают грунт, а также площадка для установки транспортных средств, подаваемых под погрузку. Когда разработку ведут в отвал, к забою относят также площадку для размещения выгружаемого из ковша грунта. Забой перемещается по мере разработки грунта экскаватором.

Размеры и формы забоя зависят от габарита экскаватора, от типа рабочего оборудования, его размеров и вида транспортных средств. Если земляные работы ведут для постройки земляного сооружения (котлована, траншеи и т. п.), то размеры забоя зависят также и от масштаба земляного сооружения. В меньшей степени размеры забоя зависят от размеров выемки при карьерных работах, когда экскаваторную разработку ведут с целью добычи материала для возведения земляных сооружений или получения сырья для приготовления строительных материалов.

Габаритные размеры экскаваторов характеризуют основные линейные размеры гусеничного хода и поворотной платформы с кузовом. На рис. 1 показаны основные габаритные размеры, необходимые для определения размеров рабочего места экскаватора.

Рекламные предложения на основе ваших интересов:

Так, например, радиус вращения хвостовой части кузова Н необходимо знать для правильной расстановки транспортных средств или правильной установки экскаватора у откоса, так как по правилам техники безопасности при любом повороте платформы расстояние между задней частью кузова и откосом или транспортным средством должно быть не меньше 1 м.

Рис. 1. Габаритные размеры экскаваторов:
А — наибольшая длина, Б — наибольшая ширина, В — наибольшая высота, Г — ширина кузова, Д — высота по крыше, Е — высота оси пяты стрелы от уровня стоянки, Ж — расстояние от оси пяты стрелы до оси вращения, 3 — ширина гусеничной ленты, И — ширина гусеничного хода. К — длина гусеницы, Л — просвет под противовесной плитой, М — просвет под картером ходового механизма, Н — радиус вращения хвостовой части кузова

При всех экскаваторных работах забой проектируют и организуют так, чтобы лучше использовать оборудование, добиваться высокой производительности труда и снижения стоимости работ. Большую помощь здесь оказывают технологические карты на установку экскаватора в забое, в которых регламентированы размеры забоя, расстановка транспортных средств, величина передвижек и т. п.

Забои экскаватора с прямой лопатой

Жесткое крепление ковша прямой лопаты позволяет работать как в отвал, так и с погрузкой в транспортные средства. Однако ввиду сравнительно небольших рабочих размеров прямой лопаты целесообразно использовать ее в первую очередь для погрузки грунта в транспортные средства.

Основные размеры экскаваторов, оборудованных прямой лопатой, определяются емкостью ковша, длиной стрелы и рукояти, а также углом наклона стрелы.

Рис. 2. Рабочие размеры экскаватора с прямой лопатой

К рабочим размерам экскаватора с прямой лопатой относятся следующие (рис. 282).

1. Радиус копания Р — горизонтальное расстояние от оси вращения экскаватора до зубьев ковша при копании; различают радиус копания на уровне стоянки или радиус планировочной площадки и наибольший радиус копания Рп. макс при максимально выдвинутой рукояти.

2. Высота копания Як — вертикальное расстояние от уровня стоянки экскаватора до зубьев ковша при копании (наибольшая высота копания Як. макс соответствует максимально поднятой рукояти) .

3. Радиус выгрузки Рр — горизонтальное расстояние от оси вращения экскаватора до середины ковша при разгрузке; различают радиус выгрузки при наибольшей высоте выгрузки и наибольший радиус выгрузки Pp. макс-

4.Высота выгрузки Яр— вертикальное расстояние от уровня стоянки экскаватора до нижней кромки открытого днища ковша в процессе выгрузки (наибольшая высота выгрузки Яр. макс соответствует максимально поднятому ковшу).

5. Глубина копания — расстояние от уровня стоянки экскаватора до зубьев ковша при копании ниже уровня стоянки.

С точки зрения сокращения передвижек выгодно увеличивать высоту забоя. Однако это увеличение ограничивается соображениями безопасного ведения работ. Рациональная высота забоя определяется также длиной пути, необходимого для того, чтобы при разработке грунта нормальной стружкой к концу набора полностью наполнить ковш.

Ширина забоя, как правило, определяется размерами рабочего оборудования; расстояние между экскаватором и транспортными средствами выбирается таким, чтобы работать с наименьшими углами поворота.

Рис. 3. Схемы экскаваторного забоя при работе прямой лопатой:
а — тупиковой, лобовой, б — боковой

Рытье различных выемок, котлованов, каналов, траншей прямой лопатой и работу в карьерах с погрузкой в транспортные средства производят двумя основными способами:
а) лобовыми забоями, при которых транспортные средства подают сзади экскаватора по дну образуемой выемки;
б) боковыми забоями — продольными проходами с продольным расположением транспортных средств параллельно движению экскаватора.

В лобовых забоях приходится работать с большим, чем в боковом забое, углом поворота, что удлиняет цикл. Здесь менее удобно применять рельсовый транспорт и ограничено число транспортных единиц, которые могут одновременно подходить к забою. Этот способ разработки применяют весьма редко (при проходе начальных траншей и в других исключительных случаях).

Больше всего распространены боковые забои, в которых грунт погружают в транспортные средства, устанавливаемые на уровне движения экскаватора. Для выгрузки грунта экскаватор необходимо поворачивать на относительно небольшой угол, а ковш поднимать на небольшую высоту.

Забои экскаватора с драглайном

Большие, чем у прямой лопаты, размеры драглайна определяют его преимущества при работе с выгрузкой грунта в отвал или при укладке грунта непосредственно в возводимое сооружение. Гибкое крепление ковша делает менее удобной погрузку грунта в транспортирующие машины (по сравнению с прямой лопатой). Однако на практике погрузку драглайном в транспорт применяют многие машинисты.

Рис. 4. Рабочие размеры экскаватора с драглайном

В настоящее время для погрузки грунта в автотранспорт применяют ковши драглайна емкостью до 1,6 м3.

На рис. 4 показаны основные рабочие размеры экскаватора, оборудованного драглайном. Эти размеры определяются емкостью ковша, длиной стрелы, углом наклона стрелы и величиной заброса ковша за пределы горизонтальной проекции стрелы.

При концевом проходе экскаватор движется вдоль оси разрабатываемого забоя в пределах полосы, на которой вынимается грунт (рис. 285). Грунт можно укладывать в двухсторонние или односторонние отвалы или грузить в транспортные средства.

При последующей разработке экскаватор разрабатывает лишь один откос. Грунт можно укладывать в односторонний отвал или грузить в автомашины. Угол поворота при концевом проходе составляет в среднем 70—80°.

Для поперечной разработки забоя экскаватор устанавливают сбоку забоя и копают в направлении, поперечном оси движения. При погрузке в автотранспорт средний угол поворота составляет 80—90°, а при работе в отвал — 160—170°. Такая схема работы целесообразна при необходимости увеличения ширины выемки и дальности переноса грунта.

Забои экскаватора с обратной лопатой

Экскаваторы с обратной лопатой ведут работы в забоях, аналогичных забоям экскаваторов с драглайном.

Обычно ось рабочего перемещения экскаватора для уменьшения угла поворота смещается в сторону транспортного пути. Автомашины устанавливают таким образом, чтобы во время загрузки угол между стрелой экскаватора и продольной осью автомобиля был около 40°.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты