Реакция гидратации цемента это
Что такое гидратация цемента и для чего нужно знать процессы, происходящие с ним
Гидратация цемента – это процесс прохождения реакции между компонентами смеси и водой. Без воды бетонный раствор получить не удастся, так как именно при ее добавлении начинается стадия схватывания цемента, а потом и твердения. Эти два этапа считаются основными для приобретения смесью заявленных характеристик (в первую очередь прочности, а также других важных параметров).
Согласно стандартам, начало схватывания портландцемента должно наступать через 45 и более минут после замеса смеси. После того, как процесс схватывания завершился (до 3 часов по регламенту), начинается твердение цементного раствора. Это более длительный процесс, который может занимать годы.
Марочной прочности бетонная смесь достигает через 28 дней, но и по истечении этого периода процесс твердения и набора камнем прочности продолжается.
Знать о том, каким образом проходит схватывание и твердение портландцемента, нужно обязательно. Уделив внимание этим этапам, удастся избежать ошибок при замесе и заливке, которые часто приводят к потере раствором клеящей способности, понижению прочности, деформациям и другим неприятным последствиям. Немаловажны эти знания и для производства, использования разнообразных добавок к цементу, которые меняют определенные характеристики и свойства монолита, способны продлевать или сокращать стадии.
Гидратация – что это такое
Гидратация цемента – это физико-химический процесс связывания воды и ингредиентов цементного порошка. Тут стоит внимательнее изучить состав цемента и понять, каким образом взаимодействуют с водой различные компоненты, как они влияют на сроки схватывания цемента и другие характеристики.
Компоненты, входящие в состав цемента:
- С2S – двухкальцивеый силикат
- С3S – трехкальциевый силикат
- С3А – трехкальциевый алюминат
- С4АF – четырехкальциевый алюмоферит
Влияние компонентов на гидратацию:
Все минеральные составляющие цемента важны для его качества и правильного прохождения процесса гидратации. При смешивании портландцемента с водой в составе сразу создаются новые внутрикристаллические связи, демонстрирующие постепенно нарастающую прочность и доводящие бетон до состояния искусственного камня.
Ввиду того, что сроки схватывания цемента невелики и составляют в норме от 45 до 90 минут, готовить смесь нужно непосредственно перед использованием, чтобы успеть залить и выполнить все работы до начала достижения реакцией того этапа, когда работать со смесью уже невозможно (трудно заливать) или бесполезно (понижается уровень прочности).
Для полного прохождения реакции гидратации соотношение объемов цемента и воды обычно берут равное 3:2. Химически связывается до 25% молекул воды, остальные же остаются в гелевых порах бетона, пребывая в физически связанном виде. Уменьшение объема воды приведет к неполной гидратации, повышение – к появлению капиллярных пор в процессе связывания, что понижает прочность. Точные объемы составляющих всегда указываются в инструкции к цементу или рецептуре приготовления конкретной марки бетона.
Схватывание цемента
Стандартные сроки схватывания цемента:
- При комнатной температуре – до 3 часов
- При низкой температуре – до 20 часов
- При высокой температуре (если бетон находится в камере пропаривания) – до 20 минут
Существуют разные типы цемента, которые выделяют в соответствии со временем схватывания. Медленный цемент начинает схватываться по истечении 2 часов после замеса, средний – через 45-120 минут, быстрый – через 45 минут. Даже если условия неблагоприятные для прохождения реакции, цемент схватывается максимум за сутки.
После того, как бетон схватился, он еще не обладает всеми параметрами по стандарту и продолжать строительные работы запрещено. Бетон может разрушаться даже при минимальных нагрузках, терять характеристики, неравномерно застывать и т.д. Поэтому в процессе набора прочности цемента нужно прекратить работы и обеспечить идеальные условия.
Процесс твердения цемента
Это второй и более длительный этап, который следует сразу за схватыванием. Твердеть цемент может на протяжении многих лет. Максимальных (100%) показателей прочности смесь достигнет через несколько лет, но уже через 28 суток набирает большую часть (до 90-95%), пригодных для выполнения дальнейших работ и эксплуатации.
Обычно процесс твердения цемента запускается через сутки после начала реакции гидратации. Сначала бетон не прочный и подвержен негативному воздействию среды: частицы цемента уже кристаллизировались, скрепили заполнитель смеси вокруг себя, но пока связи чрезвычайно хрупкие и могут легко разрушиться.
Минимальные механические воздействия разрушают связи и восстановлению они не подлежат. Так, если походить по твердеющей стяжке, соединения разрушатся и уже никогда не схватятся: в местах, где было воздействие, в скором времени бетон начнет высыпаться, трескаться и крошиться.
Для обеспечения нормальных характеристик бетона застывания его нужно дожидаться правильно – в первые 14-20 дней создать влажную среду, брызгать водой при необходимости, защищать от ультрафиолета. Бетон должен застыть, но никак не высохнуть (в таком случае не избежать трещин, деформаций, увеличения усадки и других неприятностей).
Гидратация цемента – самый важный процесс, который должен проходить по технологии. Поэтому до начала работы с раствором необходимо правильно определить водо-цементное отношение, пропорции компонентов, изучить инструкцию и обеспечить раствору идеальные условия для прохождения всех реакций.
Гидратация цемента
П ортландцемент состоит из различных соединений, которые реагируют с водой и обуславливают его схватывание и твердение.
Все соединения в портландцементе являются безводными и при взаимодействии с водой образуют гидратные соединения. Продукты гидратации цемента являются относительно слабо растворимыми соединениями. В противном случае растворы и бетоны не оставались бы стабильными в присутствии воды и быстро разрушались бы.
Взаимодействие цемента с водой является реакцией отдельных его компонентов, так трёхкальциевый аллюминат С3А вступает в реакцию очень быстро, а четырёхкальциевый аллюмоферрит С4F намного медленнее. Взаимодействие с водой трёхкальциевого силиката С3S приводит к быстрому насыщению раствора известью. Гипс, присутствующий в цементе, также начинает быстро растворяться, что необходимо для регулирования гидратации аллюмината.
Схематично ход реакции гидратации портландцемента имеет следующий вид:.
I | I-a | |
---|---|---|
2CaO⋅SiO2 | 3CaO⋅SiO2 | |
↓ медленно | ↓ умеренно | |
2CaO⋅SiO2⋅aq | 2CaO⋅SiO2⋅aq + Ca(OH)2 | |
↓ II ↓ | ||
3CaO⋅2SiO⋅aq + Ca(OH)2 | ||
III | ||
Возможное образование гидроаллюмосиликатов кальция с переходом части кремнезёма в твёрдый раствор глинозёма и окиси железа | ||
IV | IV-a | |
3CaO⋅Al2O3 + CaSO4⋅2H2O | 4CaO⋅Al2O3⋅Fe2O3 + CaSO4⋅2H2O + Ca(OH)2 | |
↓ непосредственно | ↓ быстро | |
иглы 3CaO⋅Al2O3⋅3CaSO4⋅aq | иглы 3CaO⋅Al2O3⋅3CaSO4⋅aq и 3CaO⋅Fe2O3⋅3CaSO4⋅aq в твёрдом растворе | |
V | V-a | |
↓ + Ca(OH)2 гексагональный пластинчатый твёрдый раствор 3CaO⋅Al2O3⋅3CaSO4⋅aq и 3CaO⋅Al2O3⋅Ca(OH)2⋅aq | ↓ гексагональные пластинчатые твёрдые растворы 3CaO(Al2O3,Fe2O3)3CaSO4⋅aq и 3CaO⋅Al2O3⋅Ca(OH)2⋅aq | |
VI | VI-a | |
↓ + SiO3 из силикатов смешанные гексагональные твёрдые растворы типа 3CaO(Al2O3,Fe2O3)Ca[(OH)2,(SO4),(SiO3)]aq |
Эта схема весьма условна, но она позволяет понять какие реакции протекают при гидратации цемента. Стадии I и I-a, IV и IV-a относятся к самому раннему периоду гидратации. Стадии V и V-a не могут начатся пока не израсходован весь гипс, т.е. по времени от 12 до 24 часов. Стадии III, VI и VI-a представляют собой очень медленные реакции, для полного завершения которых требуются годы.
Если рассматривать относительную скорость гидратации различных соединений, то гидратация С3А почти полностью заканчивается к 24 часам, у С3S длительность её достигает 7 суток, а у С2S становится заметной в более поздние сроки.
Электоронномикроскопические снимки срезов гидратированного цемента дают кристаллическую метёлкообразную структуру, которую можно рассмотреть на снимке:
Строй-справка.ру
Отопление, водоснабжение, канализация
Навигация:
Главная → Все категории → Бетонная смесь
Под гидратацией понимают реакции клинкерных составляющих с водой (присоединение води), причем образуются твердые новообразования (гидраты), которые заполняют первоначально залитый цементом и водой объем плотным наслоением гелевых частиц, вызывая тем самым упрочнение.
Таким образом, без воды твердение невозможно.
Первоначально жидкий или пластичный цементный клей превращается в результате гидратации в цементный камень. Первая стадия этого процесса называется загустеванием, или схватыванием, дальнейшая—упрочнением, или твердением.
Твердение цемента — очень сложный физико-химический процесс, который здесь будет рассмотрен упрощенно. Гидратацию рассмотрим в двух аспектах: как пространственный процесс (какие объемы занимают новообразования и какую структуру они имеют) и как химический процесс (каков состав новообразования).
Гидратация как пространственный процесс. Ответ на вопрос о том, какие образования возникают при гидратации, дан на рис. 19, где представлены продукты гидратации, возникающие в разное время. Одновременно показана кинетика нарастания прочности.
Можно различить следующие процессы.
Цементные частицы в виде дробленых зерен окружены водой затворе-ния, объем которой относительно велик (50—70 объемных процентов). Этот объем заполняется новообразованиями, чтобы возникла прочная структура (цементный камень). Благодаря химическим реакциям с водой уже через несколько минут возникают как на поверхности зерен, так и в воде иглообразные кристаллы а. Через 6 ч уже образуется так много кристаллов, что между цементными зернами возникают пространственные связи (б — в нижней части рисунка два крупных кристалла образуют двумя зернами цемента).
К этому моменту практик говорит, что цемент «схватывается». Через 8—10 ч весь объем между постепенно уменьшающимися зернами цемента заполнен скелетом иглообразных кристаллов, который вследствие возникновения из С3А называется также «алюминатной структурой». Будучи до сих пор пластичной, масса начинает застывать, и происходит быстрое нарастание прочности. В оставшихся пустотах возникают одновременно, но сначала гораздо менее интенсивно продукты гидратации клинкерных минералов C3S и C2S. Последние образуют гомогенный чрезвычайно тонкопористый ворс из очень малых кристаллов, так называемую силикатную структуру в. Значение этой структуры все более увеличивается. Она является собственно носителем прочности цементного камня и приблизительно через сутки начинает вытеснять алюминатную структуру. В возрасте 28 сут (обычный срок испытания цемента и бетона) обнаруживается только силикатная структура г.
Кроме того, видны и неиспользованные цементные зерна (в — сверху, в середине). К этому времени процесс гидратации еще не закончен, в ряде случаев он может продолжаться годы. Возникновение продуктов гидратации рассматривают как гелеобразование, а продукты гидратации — как гель. Скорость, с которой протекают эти процессы, зависит от: Ф крупности цементных зерен (тонины помола цемента): 9 минерального состава клинкера цемента; – количества воды, которым замешивается цемент; – температуры гидратации;
-введения добавок (разд. 2.4),
Рис. 20. Гидратация цемента в цементный клей (представлена на примере объемных изменений цементного клея, состоящего из 100 г Цемента и 40 г воды — ВЩ = 0,4)
Для полной гидратации цементного зерна необходимо присутствие 0,4-кратного количества воды от его массы. Из нее только 60% (т. е. 0,25 массы цемента) связывается химически. Остальные 40% исходной воды остаются в порах геля (гелевые поры) слабо связанными. Размер гелевых пор около 3-10
7 мм. Они неизбежны и служат причиной тонкопористого строения гелевой массы. При химическом связывании вода, в какой-то мере, претерпевает объемную контракцию, которая составляет приблизительно ‘Д ее первоначального объема. Поэтому плотный обьем геля (без пор) на такую величину меньше суммы объемов исходных компонентов цемента и воды. Этот процесс называют усадкой, а освобождающийся в цементном камне объем — объемом усадки. При наличии воды именно этот объем пор заполняется водой. При полной гидратации цементного клея получаем гель, объем которого примерно на 30% состоит из пор. Схематически объемные изменения представлены на рис. 20.
До сих пор мы исходили из того, что цементный клей состоит из 1 ч. массы цемента и 0,4 ч. массы воды. На практике это не всегда так. Если количество цемента больше, то количество воды будет недостаточном, чтобы полностью гидратировались цементные зерна, и в цементном камне останутся непрореагировавшие зерна цемента.
Рис. 21. Объемные соотношения в цементном камне при различном В/Ц и максимально возможной степени гидратации (диаграмма и схема)
1 — объем гелевых пор; 2 — объем капиллярных пор; 3 — объем усадочных пор; 4 — масса геля; 5— неиспользованный цемент; 6 — вода; 7 — цементное зерно; 8 — капиллярные поры (вода)
При большем количестве воды часть ее не участвует в процессе гидратации и образует в цементном камне так называемые капиллярные поры диаметром около Ю-3 мм, которые на несколько порядков больше гелевых пор. Примерно таких же размеров достигают и пустоты, возникающие в результате уже упомянутой усадки. Таким образом, соотношение масс воды л цемента в значительной мере определяет структурные отношения в цементном камне.-Пользуясь этим соотношением, можно определить важнейшие физические свойства цементного камня. Поэтому соотношение масса воды =водоцементное масса цемента отношение (В/Ц) имеет определяющее значение в технологии бетона.
На рис. 21 представлены объемные соотношения при различных значениях В/Ц и предельно возможной степени гидратации. Можно видеть, что суммарная пористость цементного камня тем больше, чем больше значение В/Ц (другими словами, чем меньше цемента в цементном клее). Эти схемы и диаграмма приведены с целью наглядного представления для различных В/Ц, хотя и не вполне отвечают действительности.
Все изложенное – здесь позволяет вывести некоторые важные закономерности, характерные для цементного камня: – процесс гидратации протекает постепенно; – получающийся в результате цементный камень, хотя и является твердым телом, но имеет тонкопористую структуру; – в цементном камне различают поровое пространство усадки и геля(которые неизбежны) и капиллярное поровое пространство (возникающее в увеличивающемся объеме, если цементный клей содержит более 0,4-кратного по отношению к цементу количества воды, т. е. если он подвержен влиянию водоцементного отношения).
По значению В/Ц цементного клея можно оценить пористость возникающего из него цементного камня и сделать выводы о его физических свойствах.
Гидратация как химический процесс. Твердение, представленное как пространственный процесс, теперь рассмотрим как химический процесс. Из разд. 2 известно, что цемент в основном состоит из четырех клинкерных минералов: C3S, C2S, C3A, C4AF.
Возникающие таким образом продукты гидратации представляют собой уже упомянутый гель. Для простоты обозначают их так же, как и клинкерные минералы, из которых они возникли (например, силикат кальция — гидросиликат кальция). Продукты гидратации отдельных минералов имеют специфические свойства, знание которых необходимо для дальнейшего понимания процесса твердения.
Анализ уравнений реакции позволяет сделать некоторые важные заключения. Во-первых, при гидратации возникают совершенно новые вещества. В процессе взаимодействия клинкерных минералов C3S и СгЗ с водой образуются гидросиликаты кальция и, кроме того, гашеная известь [Са(ОН)2], остающаяся внутри цементного камня. Этому явлению мы обязаны тем, что помещенная в цементный клей сталь не ржавеет, благодаря чему стало возможным существование железобетона. Кроме того, следует помнить и о том, что при гидратации выделяется тепло.
Это практик обязательно должен знать. И особенно следует помнить об этом при выборе цемента для возведения определенных конструкций и при выборе той или иной технологии изготовления бетонных сооружений. Продукты гидратации клинкерных минералов различаются также по прочности. Из рис. 22 видно, что главными носителями прочности являются силикаты кальция.. Особенно интересно, что клинкерный минерал с быстрым нарастанием прочности (C3S) выделяет большее количество тепла (502 Дж/г), чем клинкерный минерал с более медленным нарастанием прочности (C2S — 206 Дж/г).
Продукты гидратации клинкерных минералов различаются и по химическому составу.
Продукт гидратации называется этт-рингитом и раньше из-за своей палочковидной формы и вредного влияния назывался «цементной бациллой». Для этой реакции характерно, что присоединение 32 молекул воды вызывает сильное приращение объема по сравнению с объемами исходных компонентов: СзА и гипса. Увеличение объема безопасно до тех пор, пока оно происходит в пластичной матрице. В свежезамешенном цементном клее образование эттрингита вызывается с целью регулирования скорости твердения.
Рис. 22. Нарастание прочности клинкерных минералов
Механизм действия можно себе представить следующим образом. Очень быстро возникающие кристаллы эттрингита образуют оболочки вокруг цементных зерен. При этом затрудняется доступ воды и замедляется процесс гидратации. Без добавки гипса получился бы мгновенно схватывающийся цемент — «быст-ряк». Объемное расширение опасно, когда оно происходит в уже затвердевшем цементном камне (бетоне).
При этом наблюдается 4,6-кратное увеличение объема. Подобные реакции в затвердевшем цементном камне приводят к возникновению напряжений, нарушению структуры и ее разрушению (сульфатная коррозия). Поэтому для бетонных объектов, подверженных сульфатному воздействию, следует применять цементы, бедные СзА, чтобы ограничить или исключить образование эттрингита. Итак, при гидратации клинкерных минералов C3S и C2S образуется помимо гидросиликатов кальция гашеная известь Са(ОН)2, .Она предотвращает развитие коррозии стали, помещенной в цементный камень; – в процессе гидратации клинкерных минералов выделяется разное количество тепла; – в результате гидратации клинкерных минералов образуется искусственный камень с различной прочностью; – продукт гидратации С3А неустойчив по отношению к сульфатам. Возникает эттрингит, причем изменение объема может привести к разрушению цементного камня (сульфатная коррозия); – в зависимости от поставленных задач в строительстве применяются цементы с различной долей каждого из клинкерных минералов, причем в качестве основных критериев при выборе служат четыре приведенных выше.
Навигация:
Главная → Все категории → Бетонная смесь
Гидратация цемента
Гидратация цемента — химическая реакция клинкерных составляющих цемента с водой (присоединение воды), причем образуются твердые новообразования (гидраты), которые заполняют первоначально залитый цементом и водой объём плотным наслоением гелевых частиц, вызывая тем самым упрочнение. Первоначально жидкий или пластичный, цементный клей превращается в результате гидратации в цементный камень. Первая стадия этого процесса называется загустеванием, или схватыванием, дальнейшая — упрочнением, или твердением.
Содержание
Гидратация как пространственный процесс
Цементные частицы в виде дробленых зерен окружены водой затворения, объём которой относительно велик (50—70 объёмных процентов). Этот объём заполняется новообразованиями, чтобы возникла прочная структура (цементный камень). Благодаря химическим реакциям с водой уже через несколько минут как на поверхности зерен, так и в воде возникают иглообразные кристаллы. Через 6 часов образуется уже так много кристаллов, что между цементными зернами возникают пространственные связи. Через 8—10 часов весь объём между постепенно уменьшающимися зернами цемента заполнен скелетом иглообразных кристаллов. Его также называют «алюминатной структурой», так как он возникает из 3CaO*Al2O3. Будучи до сих пор пластичной, масса начинает застывать, при этом происходит быстрое нарастание прочности. В оставшихся пустотах возникают одновременно (но поначалу не слишком интенсивно) продукты гидратации клинкерных минералов 2(3CaO*SiO2) и 2(2CaO*SiO2). Последние образуют гомогенный чрезвычайно тонкопористый ворс из малых кристаллов (так называемую «силикатную структуру»). Значение этой структуры вce более увеличивается. Она становится носителем прочности цементного камня и приблизительно через сутки начинает вытеснять алюминатную структуру. Через 28 суток (обычный срок испытания цемента и бетона) обнаруживается только силикатная структура.
Возникновение продуктов гидратации рассматривают как гелеобразование, а продукты гидратации — как гель. Скорость, с котором протекают эти процессы, зависит от:
- крупности цементных зерен (толщины помола цемента);
- минерального состава клинкера цемента;
- количества воды, которым замешивается цемент;
- температуры гидратации;
- введения добавок
Для полной гидратации цементного зерна необходимо присутствие 0,4-кратного (по массе) количества воды. Из неё только 60 % (то есть 0,25 массы цемента) связывается химически. Остальные 40 % исходной воды остаются слабо связанными в порах геля. Размер гелевых пор около 3-10 мм. Их образование неизбежно, именно они определяют тонко-пористое строение гелевой массы.
Гидратация как химический процесс
Безводные минералы клинекера при реакции с водой превращаются в гидросиликаты, гидроаллюминаты и гидроферраты кальция.
Образовавшийся Ca(OH)2 под действием CO2 воздуха постепенно превращается в CaCO3, гидроаллюминаты кальция с гипсом в присутствии воды дают двойные основные сульфаты, например Ca6Al2(OH)12(SO4)3*26H2O и Ca4Al2(OH)12SO4*6H2O При получении бетона образовавшийся Ca(OH)2 с CO2 воздуха и SiO2 превращается в очень прочную массу, состоящую из карбонатов и силикатов кальция.
Литература
Райхель В., Конрад Д. Бетон: В 2-х ч. Ч. 1. Свойства. Проектирование. Испытание. — М.: М.: Стройиздат, 1979. С. 33.Пер. с нем./Под ред. В. Б. Ратинова.